SleeveShape / app.py
DumbledoreWiz's picture
Create app.py
85205f1 verified
raw
history blame
1.22 kB
import torch
from transformers import ViTForImageClassification, ViTFeatureExtractor
import gradio as gr
from PIL import Image
# Define the class labels as used during training
labels = ['Leggings', 'Jogger', 'Palazzo', 'Cargo', 'Dresspants', 'Chinos']
# Load the ViT model and feature extractor
model = ViTForImageClassification.from_pretrained("DumbledoreWiz/PantsShape")
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
# Set the model to evaluation mode
model.eval()
# Define the prediction function
def predict(image):
# Preprocess the image
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits[0], dim=0)
# Prepare the output dictionary
result = {labels[i]: float(probabilities[i]) for i in range(len(labels))}
return result
# Set up the Gradio Interface
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=6),
title="Pants Shape Classifier"
)
# Launch the app
if __name__ == "__main__":
gradio_app.launch()