Spaces:
Running
Running
import streamlit as st | |
from torchvision.transforms import functional as F | |
import gc | |
import numpy as np | |
from modules.streamlit_utils import * | |
def main(): | |
is_mobile, screen_width = configure_page() | |
display_banner(is_mobile) | |
display_title(is_mobile) | |
display_sidebar() | |
initialize_session_state() | |
cropped_image = None | |
img_selected = load_example_image() | |
uploaded_file = load_user_image(img_selected, is_mobile) | |
if uploaded_file is not None: | |
cropped_image = display_image(uploaded_file, screen_width, is_mobile) | |
if cropped_image is not None: | |
get_score_threshold(is_mobile) | |
if st.button("π Launch Prediction"): | |
launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width) | |
st.session_state.original_prediction = st.session_state.prediction.copy() | |
st.rerun() | |
if 'prediction' in st.session_state and uploaded_file: | |
#if st.button("π Refresh image"): | |
#st.rerun() | |
with st.expander("Show result of prediction"): | |
with st.spinner('Waiting for result display...'): | |
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width)) | |
if not is_mobile: | |
modify_results() | |
modeler_options(is_mobile) | |
display_bpmn_modeler(is_mobile, screen_width) | |
gc.collect() | |
if __name__ == "__main__": | |
print('Starting the app...') | |
main() | |