Spaces:
Running
Running
from torchvision.models.detection import keypointrcnn_resnet50_fpn | |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor | |
from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor | |
from torchvision.models.detection import KeypointRCNN_ResNet50_FPN_Weights | |
import random | |
import torch | |
from torch.utils.data import Dataset | |
import torchvision.transforms.functional as F | |
import numpy as np | |
from torch.utils.data.dataloader import default_collate | |
import cv2 | |
import matplotlib.pyplot as plt | |
from torch.utils.data import DataLoader, Subset, ConcatDataset | |
import streamlit as st | |
"""object_dict = { | |
0: 'background', | |
1: 'task', | |
2: 'exclusiveGateway', | |
3: 'eventBasedGateway', | |
4: 'event', | |
5: 'messageEvent', | |
6: 'timerEvent', | |
7: 'dataObject', | |
8: 'dataStore', | |
9: 'pool', | |
10: 'lane', | |
} | |
arrow_dict = { | |
0: 'background', | |
1: 'sequenceFlow', | |
2: 'dataAssociation', | |
3: 'messageFlow', | |
} | |
class_dict = { | |
0: 'background', | |
1: 'task', | |
2: 'exclusiveGateway', | |
3: 'eventBasedGateway', | |
4: 'event', | |
5: 'messageEvent', | |
6: 'timerEvent', | |
7: 'dataObject', | |
8: 'dataStore', | |
9: 'pool', | |
10: 'lane', | |
11: 'sequenceFlow', | |
12: 'dataAssociation', | |
13: 'messageFlow', | |
}""" | |
object_dict = { | |
0: 'background', | |
1: 'task', | |
2: 'exclusiveGateway', | |
3: 'event', | |
4: 'parallelGateway', | |
5: 'messageEvent', | |
6: 'pool', | |
7: 'lane', | |
8: 'dataObject', | |
9: 'dataStore', | |
10: 'subProcess', | |
11: 'eventBasedGateway', | |
12: 'timerEvent', | |
} | |
arrow_dict = { | |
0: 'background', | |
1: 'sequenceFlow', | |
2: 'dataAssociation', | |
3: 'messageFlow', | |
} | |
class_dict = { | |
0: 'background', | |
1: 'task', | |
2: 'exclusiveGateway', | |
3: 'event', | |
4: 'parallelGateway', | |
5: 'messageEvent', | |
6: 'pool', | |
7: 'lane', | |
8: 'dataObject', | |
9: 'dataStore', | |
10: 'subProcess', | |
11: 'eventBasedGateway', | |
12: 'timerEvent', | |
13: 'sequenceFlow', | |
14: 'dataAssociation', | |
15: 'messageFlow', | |
} | |
def is_inside(box1, box2): | |
"""Check if the center of box1 is inside box2.""" | |
x_center = (box1[0] + box1[2]) / 2 | |
y_center = (box1[1] + box1[3]) / 2 | |
return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3] | |
def is_vertical(box): | |
"""Determine if the text in the bounding box is vertically aligned.""" | |
width = box[2] - box[0] | |
height = box[3] - box[1] | |
return (height > 2*width) | |
def rescale_boxes(scale, boxes): | |
for i in range(len(boxes)): | |
boxes[i] = [boxes[i][0]*scale, | |
boxes[i][1]*scale, | |
boxes[i][2]*scale, | |
boxes[i][3]*scale] | |
return boxes | |
def iou(box1, box2): | |
# Calcule l'intersection des deux boîtes englobantes | |
inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])] | |
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1]) | |
# Calcule l'union des deux boîtes englobantes | |
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) | |
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1]) | |
union_area = box1_area + box2_area - inter_area | |
return inter_area / union_area | |
def proportion_inside(box1, box2): | |
# Calculate the areas of both boxes | |
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1]) | |
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1]) | |
# Determine the bigger and smaller boxes | |
if box1_area > box2_area: | |
big_box = box1 | |
small_box = box2 | |
else: | |
big_box = box2 | |
small_box = box1 | |
# Calculate the intersection of the two bounding boxes | |
inter_box = [max(small_box[0], big_box[0]), max(small_box[1], big_box[1]), min(small_box[2], big_box[2]), min(small_box[3], big_box[3])] | |
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1]) | |
# Calculate the proportion of the smaller box inside the bigger box | |
if (small_box[2] - small_box[0]) * (small_box[3] - small_box[1]) == 0: | |
return 0 | |
proportion = inter_area / ((small_box[2] - small_box[0]) * (small_box[3] - small_box[1])) | |
# Ensure the proportion is at most 100% | |
return min(proportion, 1.0) | |
def resize_boxes(boxes, original_size, target_size): | |
""" | |
Resizes bounding boxes according to a new image size. | |
Parameters: | |
- boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4]. | |
- original_size (tuple): The original size of the image as (width, height). | |
- target_size (tuple): The desired size to resize the image to as (width, height). | |
Returns: | |
- np.array: The resized bounding boxes as a numpy array of shape [N, 4]. | |
""" | |
orig_width, orig_height = original_size | |
target_width, target_height = target_size | |
# Calculate the ratios for width and height | |
width_ratio = target_width / orig_width | |
height_ratio = target_height / orig_height | |
# Apply the ratios to the bounding boxes | |
boxes[:, 0] *= width_ratio | |
boxes[:, 1] *= height_ratio | |
boxes[:, 2] *= width_ratio | |
boxes[:, 3] *= height_ratio | |
return boxes | |
def resize_keypoints(keypoints: np.ndarray, original_size: tuple, target_size: tuple) -> np.ndarray: | |
""" | |
Resize keypoints based on the original and target dimensions of an image. | |
Parameters: | |
- keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates. | |
- original_size (tuple): The width and height of the original image (width, height). | |
- target_size (tuple): The width and height of the target image (width, height). | |
Returns: | |
- np.ndarray: The resized keypoints. | |
Explanation: | |
The function calculates the ratio of the target dimensions to the original dimensions. | |
It then applies these ratios to the x and y coordinates of each keypoint to scale them | |
appropriately to the target image size. | |
""" | |
orig_width, orig_height = original_size | |
target_width, target_height = target_size | |
# Calculate the ratios for width and height scaling | |
width_ratio = target_width / orig_width | |
height_ratio = target_height / orig_height | |
# Apply the scaling ratios to the x and y coordinates of each keypoint | |
keypoints[:, 0] *= width_ratio # Scale x coordinates | |
keypoints[:, 1] *= height_ratio # Scale y coordinates | |
return keypoints | |
def write_results(name_model,metrics_list,start_epoch): | |
with open('./results/'+ name_model+ '.txt', 'w') as f: | |
for i in range(len(metrics_list[0])): | |
f.write(f"{i+1+start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n") | |
def find_other_keypoint(idx, keypoints, boxes): | |
box = boxes[idx] | |
key1,key2 = keypoints[idx] | |
x1, y1, x2, y2 = box | |
center = ((x1 + x2) // 2, (y1 + y2) // 2) | |
average_keypoint = (key1 + key2) // 2 | |
#find the opposite keypoint to the center | |
if average_keypoint[0] < center[0]: | |
x = center[0] + abs(center[0] - average_keypoint[0]) | |
else: | |
x = center[0] - abs(center[0] - average_keypoint[0]) | |
if average_keypoint[1] < center[1]: | |
y = center[1] + abs(center[1] - average_keypoint[1]) | |
else: | |
y = center[1] - abs(center[1] - average_keypoint[1]) | |
return x, y, average_keypoint[0], average_keypoint[1] | |
def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5): | |
""" | |
Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores. | |
Parameters: | |
- boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max]. | |
- scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection. | |
- labels (np.ndarray): Array of labels corresponding to each box. | |
- keypoints (np.ndarray): Array of keypoints associated with each box. | |
- iou_threshold (float): Threshold for IoU above which a box is considered overlapping. | |
Returns: | |
- tuple: Filtered boxes, scores, labels, and keypoints. | |
""" | |
# Calculate the area of each bounding box to use in IoU calculation. | |
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
# Sort the indices of the boxes based on their scores in descending order. | |
order = scores.argsort()[::-1] | |
keep = [] # List to store indices of boxes to keep. | |
while order.size > 0: | |
# Take the first index (highest score) from the sorted list. | |
i = order[0] | |
keep.append(i) # Add this index to 'keep' list. | |
# Compute the coordinates of the intersection rectangle. | |
xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0]) | |
yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1]) | |
xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2]) | |
yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3]) | |
# Compute the area of the intersection rectangle. | |
w = np.maximum(0.0, xx2 - xx1) | |
h = np.maximum(0.0, yy2 - yy1) | |
inter = w * h | |
# Calculate IoU and find boxes with IoU less than the threshold to keep. | |
iou = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(iou <= iou_threshold)[0] | |
# Update the list of box indices to consider in the next iteration. | |
order = order[inds + 1] # Skip the first element since it's already included in 'keep'. | |
# Use the indices in 'keep' to select the boxes, scores, labels, and keypoints to return. | |
boxes = boxes[keep] | |
scores = scores[keep] | |
labels = labels[keep] | |
keypoints = keypoints[keep] | |
return boxes, scores, labels, keypoints | |
def draw_annotations(image, | |
target=None, | |
prediction=None, | |
full_prediction=None, | |
text_predictions=None, | |
model_dict=class_dict, | |
draw_keypoints=False, | |
draw_boxes=False, | |
draw_text=False, | |
draw_links=False, | |
draw_twins=False, | |
write_class=False, | |
write_score=False, | |
write_text=False, | |
write_idx=False, | |
score_threshold=0.4, | |
keypoints_correction=False, | |
only_print=None, | |
axis=False, | |
return_image=False, | |
new_size=(1333,800), | |
resize=False): | |
""" | |
Draws annotations on images including bounding boxes, keypoints, links, and text. | |
Parameters: | |
- image (np.array): The image on which annotations will be drawn. | |
- target (dict): Ground truth data containing boxes, labels, etc. | |
- prediction (dict): Prediction data from a model. | |
- full_prediction (dict): Additional detailed prediction data, potentially including relationships. | |
- text_predictions (tuple): OCR text predictions containing bounding boxes and texts. | |
- model_dict (dict): Mapping from class IDs to class names. | |
- draw_keypoints (bool): Flag to draw keypoints. | |
- draw_boxes (bool): Flag to draw bounding boxes. | |
- draw_text (bool): Flag to draw text annotations. | |
- draw_links (bool): Flag to draw links between annotations. | |
- draw_twins (bool): Flag to draw twins keypoints. | |
- write_class (bool): Flag to write class names near the annotations. | |
- write_score (bool): Flag to write scores near the annotations. | |
- write_text (bool): Flag to write OCR recognized text. | |
- score_threshold (float): Threshold for scores above which annotations will be drawn. | |
- only_print (str): Specific class name to filter annotations by. | |
- resize (bool): Whether to resize annotations to fit the image size. | |
""" | |
# Convert image to RGB (if not already in that format) | |
if prediction is None: | |
image = image.squeeze(0).permute(1, 2, 0).cpu().numpy() | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image_copy = image.copy() | |
scale = max(image.shape[0], image.shape[1]) / 1000 | |
# Function to draw bounding boxes and keypoints | |
def draw(data,is_prediction=False): | |
""" Helper function to draw annotations based on provided data. """ | |
for i in range(len(data['boxes'])): | |
if is_prediction: | |
box = data['boxes'][i].tolist() | |
x1, y1, x2, y2 = box | |
if resize: | |
x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0] | |
score = data['scores'][i].item() | |
if score < score_threshold: | |
continue | |
else: | |
box = data['boxes'][i].tolist() | |
x1, y1, x2, y2 = box | |
if draw_boxes: | |
if only_print is not None: | |
if data['labels'][i] != list(model_dict.values()).index(only_print): | |
continue | |
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2*scale)) | |
if is_prediction and write_score: | |
cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (100,100, 255), 2) | |
if write_class and 'labels' in data: | |
class_id = data['labels'][i].item() | |
cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2*scale)), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (255, 100, 100), 2) | |
if write_idx: | |
cv2.putText(image_copy, str(i), (int(x1) + int(15*scale), int(y1) + int(15*scale)), cv2.FONT_HERSHEY_SIMPLEX, 2*scale, (0,0, 0), 2) | |
# Draw keypoints if available | |
if draw_keypoints and 'keypoints' in data: | |
if is_prediction and keypoints_correction: | |
for idx, (key1, key2) in enumerate(data['keypoints']): | |
if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'), | |
list(model_dict.values()).index('messageFlow'), | |
list(model_dict.values()).index('dataAssociation')]: | |
continue | |
# Calculate the Euclidean distance between the two keypoints | |
distance = np.linalg.norm(key1[:2] - key2[:2]) | |
if distance < 5: | |
x_new,y_new, x,y = find_other_keypoint(idx, data['keypoints'], data['boxes']) | |
data['keypoints'][idx][0] = torch.tensor([x_new, y_new,1]) | |
data['keypoints'][idx][1] = torch.tensor([x, y,1]) | |
print("keypoint has been changed") | |
for i in range(len(data['keypoints'])): | |
kp = data['keypoints'][i] | |
for j in range(kp.shape[0]): | |
if is_prediction and data['labels'][i] != list(model_dict.values()).index('sequenceFlow') and data['labels'][i] != list(model_dict.values()).index('messageFlow') and data['labels'][i] != list(model_dict.values()).index('dataAssociation'): | |
continue | |
if is_prediction: | |
score = data['scores'][i] | |
if score < score_threshold: | |
continue | |
x,y,v = np.array(kp[j]) | |
if resize: | |
x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0] | |
if j == 0: | |
cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (0, 0, 255), -1) | |
else: | |
cv2.circle(image_copy, (int(x), int(y)), int(5*scale), (255, 0, 0), -1) | |
# Draw text predictions if available | |
if (draw_text or write_text) and text_predictions is not None: | |
for i in range(len(text_predictions[0])): | |
x1, y1, x2, y2 = text_predictions[0][i] | |
text = text_predictions[1][i] | |
if resize: | |
x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1],image_copy.shape[0]))[0] | |
if draw_text: | |
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2*scale)) | |
if write_text: | |
cv2.putText(image_copy, text, (int(x1 + int(2*scale)), int((y1+y2)/2) ), cv2.FONT_HERSHEY_SIMPLEX, scale/2, (0,0, 0), 2) | |
def draw_with_links(full_prediction): | |
'''Draws links between objects based on the full prediction data.''' | |
#check if keypoints detected are the same | |
if draw_twins and full_prediction is not None: | |
# Pre-calculate indices for performance | |
circle_color = (0, 255, 0) # Green color for the circle | |
circle_radius = int(10 * scale) # Circle radius scaled by image scale | |
for idx, (key1, key2) in enumerate(full_prediction['keypoints']): | |
if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'), | |
list(model_dict.values()).index('messageFlow'), | |
list(model_dict.values()).index('dataAssociation')]: | |
continue | |
# Calculate the Euclidean distance between the two keypoints | |
distance = np.linalg.norm(key1[:2] - key2[:2]) | |
if distance < 10: | |
x_new,y_new, x,y = find_other_keypoint(idx,full_prediction) | |
cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1) | |
cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0,0,0), -1) | |
# Draw links between objects | |
if draw_links==True and full_prediction is not None: | |
for i, (start_idx, end_idx) in enumerate(full_prediction['links']): | |
if start_idx is None or end_idx is None: | |
continue | |
start_box = full_prediction['boxes'][start_idx] | |
end_box = full_prediction['boxes'][end_idx] | |
current_box = full_prediction['boxes'][i] | |
# Calculate the center of each bounding box | |
start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2) | |
end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2) | |
current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2) | |
# Draw a line between the centers of the connected objects | |
cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2*scale)) | |
cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2*scale)) | |
i+=1 | |
# Draw GT annotations | |
if target is not None: | |
draw(target, is_prediction=False) | |
# Draw predictions | |
if prediction is not None: | |
#prediction = prediction[0] | |
draw(prediction, is_prediction=True) | |
# Draw links with full predictions | |
if full_prediction is not None: | |
draw_with_links(full_prediction) | |
# Display the image | |
image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB) | |
plt.figure(figsize=(12, 12)) | |
plt.imshow(image_copy) | |
if axis==False: | |
plt.axis('off') | |
plt.show() | |
if return_image: | |
return image_copy | |
def find_closest_object(keypoint, boxes, labels): | |
""" | |
Find the closest object to a keypoint based on their proximity. | |
Parameters: | |
- keypoint (numpy.ndarray): The coordinates of the keypoint. | |
- boxes (numpy.ndarray): The bounding boxes of the objects. | |
Returns: | |
- int or None: The index of the closest object to the keypoint, or None if no object is found. | |
""" | |
closest_object_idx = None | |
best_point = None | |
min_distance = float('inf') | |
# Iterate over each bounding box | |
for i, box in enumerate(boxes): | |
if labels[i] in [list(class_dict.values()).index('sequenceFlow'), | |
list(class_dict.values()).index('messageFlow'), | |
list(class_dict.values()).index('dataAssociation'), | |
#list(class_dict.values()).index('pool'), | |
list(class_dict.values()).index('lane')]: | |
continue | |
x1, y1, x2, y2 = box | |
top = ((x1+x2)/2, y1) | |
bottom = ((x1+x2)/2, y2) | |
left = (x1, (y1+y2)/2) | |
right = (x2, (y1+y2)/2) | |
points = [left, top , right, bottom] | |
pos_dict = {0:'left', 1:'top', 2:'right', 3:'bottom'} | |
# Calculate the distance between the keypoint and the center of the bounding box | |
for pos, (point) in enumerate(points): | |
distance = np.linalg.norm(keypoint[:2] - point) | |
# Update the closest object index if this object is closer | |
if distance < min_distance: | |
min_distance = distance | |
closest_object_idx = i | |
best_point = pos_dict[pos] | |
return closest_object_idx, best_point | |
def error(text='There is an error in the detection'): | |
st.error(text, icon="🚨") | |
def warning(text='Some element are maybe not detected, verify the results, try to modify the parameters or try to add it in the method and style step.'): | |
st.warning(text, icon="⚠️") | |