Spaces:
Runtime error
Runtime error
File size: 15,573 Bytes
3b49518 fdc4870 6a5dc6f 3b49518 a6ebf2a 3b49518 1ae6821 3b49518 5a55548 758da21 3b49518 2bde7d7 3b49518 5a55548 3b49518 a6ebf2a 3b49518 a6ebf2a 3b49518 a6ebf2a 3b49518 758da21 3b49518 7bd6dc9 81c008f 7bd6dc9 758da21 7bd6dc9 3b49518 758da21 a6ebf2a 758da21 ef5c532 3b49518 5a55548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import sys, os
import torch
TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])
CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
# Install detectron2 that matches the above pytorch version
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
os.system(f'pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/{CUDA_VERSION}/torch{TORCH_VERSION}/index.html')
os.system("pip install jinja2")
os.system("pip install git+https://github.com/cocodataset/panopticapi.git")
# Imports
import gradio as gr
import detectron2
from detectron2.utils.logger import setup_logger
import numpy as np
import cv2
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torchvision import datasets, transforms
from einops import rearrange
from PIL import Image
import imutils
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from tqdm import tqdm
import random
from functools import partial
import time
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer, ColorMode
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import add_deeplab_config
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic")
# Import Mask2Former
from mask2former import add_maskformer2_config
# DPT dependencies for depth pseudo labeling
from dpt.models import DPTDepthModel
from multimae.input_adapters import PatchedInputAdapter, SemSegInputAdapter
from multimae.output_adapters import SpatialOutputAdapter
from multimae.multimae import pretrain_multimae_base
from utils.data_constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device: {device}')
# Initialize COCO Mask2Former
cfg = get_cfg()
cfg.MODEL.DEVICE='cpu'
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
cfg.merge_from_file("mask2former/configs/coco/panoptic-segmentation/swin/maskformer2_swin_small_bs16_50ep.yaml")
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/panoptic/maskformer2_swin_small_bs16_50ep/model_final_a407fd.pkl'
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = True
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True
semseg_model = DefaultPredictor(cfg)
def predict_semseg(img):
return semseg_model(255*img.permute(1,2,0).numpy())['sem_seg'].argmax(0)
def plot_semseg(img, semseg, ax):
v = Visualizer(img.permute(1,2,0), coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
semantic_result = v.draw_sem_seg(semseg.cpu()).get_image()
ax.imshow(semantic_result)
# Initialize Omnidata depth model
os.system("wget https://datasets.epfl.ch/vilab/iccv21/weights/omnidata_rgb2depth_dpt_hybrid.pth -P pretrained_models")
omnidata_ckpt = torch.load('./pretrained_models/omnidata_rgb2depth_dpt_hybrid.pth', map_location='cpu')
depth_model = DPTDepthModel()
depth_model.load_state_dict(omnidata_ckpt)
depth_model = depth_model.to(device).eval()
def predict_depth(img):
depth_model_input = (img.unsqueeze(0) - 0.5) / 0.5
return depth_model(depth_model_input.to(device))
# MultiMAE model setup
DOMAIN_CONF = {
'rgb': {
'input_adapter': partial(PatchedInputAdapter, num_channels=3, stride_level=1),
'output_adapter': partial(SpatialOutputAdapter, num_channels=3, stride_level=1),
},
'depth': {
'input_adapter': partial(PatchedInputAdapter, num_channels=1, stride_level=1),
'output_adapter': partial(SpatialOutputAdapter, num_channels=1, stride_level=1),
},
'semseg': {
'input_adapter': partial(SemSegInputAdapter, num_classes=133,
dim_class_emb=64, interpolate_class_emb=False, stride_level=4),
'output_adapter': partial(SpatialOutputAdapter, num_channels=133, stride_level=4),
},
}
DOMAINS = ['rgb', 'depth', 'semseg']
input_adapters = {
domain: dinfo['input_adapter'](
patch_size_full=16,
)
for domain, dinfo in DOMAIN_CONF.items()
}
output_adapters = {
domain: dinfo['output_adapter'](
patch_size_full=16,
dim_tokens=256,
use_task_queries=True,
depth=2,
context_tasks=DOMAINS,
task=domain
)
for domain, dinfo in DOMAIN_CONF.items()
}
multimae = pretrain_multimae_base(
input_adapters=input_adapters,
output_adapters=output_adapters,
)
CKPT_URL = 'https://github.com/EPFL-VILAB/MultiMAE/releases/download/pretrained-weights/multimae-b_98_rgb+-depth-semseg_1600e_multivit-afff3f8c.pth'
ckpt = torch.hub.load_state_dict_from_url(CKPT_URL, map_location='cpu')
multimae.load_state_dict(ckpt['model'], strict=False)
multimae = multimae.to(device).eval()
# Plotting
def get_masked_image(img, mask, image_size=224, patch_size=16, mask_value=0.0):
img_token = rearrange(
img.detach().cpu(),
'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
)
img_token[mask.detach().cpu()!=0] = mask_value
img = rearrange(
img_token,
'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
)
return img
def denormalize(img, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD):
return TF.normalize(
img.clone(),
mean= [-m/s for m, s in zip(mean, std)],
std= [1/s for s in std]
)
def plot_semseg_gt(input_dict, ax=None, image_size=224):
metadata = MetadataCatalog.get("coco_2017_val_panoptic")
instance_mode = ColorMode.IMAGE
img_viz = 255 * denormalize(input_dict['rgb'].detach().cpu())[0].permute(1,2,0)
semseg = F.interpolate(
input_dict['semseg'].unsqueeze(0).cpu().float(), size=image_size, mode='nearest'
).long()[0,0]
visualizer = Visualizer(img_viz, metadata, instance_mode=instance_mode, scale=1)
visualizer.draw_sem_seg(semseg)
if ax is not None:
ax.imshow(visualizer.get_output().get_image())
else:
return visualizer.get_output().get_image()
def plot_semseg_gt_masked(input_dict, mask, ax=None, mask_value=1.0, image_size=224):
img = plot_semseg_gt(input_dict, image_size=image_size)
img = torch.LongTensor(img).permute(2,0,1).unsqueeze(0)
masked_img = get_masked_image(img.float()/255.0, mask, image_size=image_size, patch_size=16, mask_value=mask_value)
masked_img = masked_img[0].permute(1,2,0)
if ax is not None:
ax.imshow(masked_img)
else:
return masked_img
def get_pred_with_input(gt, pred, mask, image_size=224, patch_size=16):
gt_token = rearrange(
gt.detach().cpu(),
'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
)
pred_token = rearrange(
pred.detach().cpu(),
'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
)
pred_token[mask.detach().cpu()==0] = gt_token[mask.detach().cpu()==0]
img = rearrange(
pred_token,
'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
)
return img
def plot_semseg_pred_masked(rgb, semseg_preds, semseg_gt, mask, ax=None, image_size=224):
metadata = MetadataCatalog.get("coco_2017_val_panoptic")
instance_mode = ColorMode.IMAGE
img_viz = 255 * denormalize(rgb.detach().cpu())[0].permute(1,2,0)
semseg = get_pred_with_input(
semseg_gt.unsqueeze(1),
semseg_preds.argmax(1).unsqueeze(1),
mask,
image_size=image_size//4,
patch_size=4
)
semseg = F.interpolate(semseg.float(), size=image_size, mode='nearest')[0,0].long()
visualizer = Visualizer(img_viz, metadata, instance_mode=instance_mode, scale=1)
visualizer.draw_sem_seg(semseg)
if ax is not None:
ax.imshow(visualizer.get_output().get_image())
else:
return visualizer.get_output().get_image()
def plot_predictions(input_dict, preds, masks, image_size=224):
masked_rgb = get_masked_image(
denormalize(input_dict['rgb']),
masks['rgb'],
image_size=image_size,
mask_value=1.0
)[0].permute(1,2,0).detach().cpu()
masked_depth = get_masked_image(
input_dict['depth'],
masks['depth'],
image_size=image_size,
mask_value=np.nan
)[0,0].detach().cpu()
pred_rgb = denormalize(preds['rgb'])[0].permute(1,2,0).clamp(0,1)
pred_depth = preds['depth'][0,0].detach().cpu()
pred_rgb2 = get_pred_with_input(
denormalize(input_dict['rgb']),
denormalize(preds['rgb']).clamp(0,1),
masks['rgb'],
image_size=image_size
)[0].permute(1,2,0).detach().cpu()
pred_depth2 = get_pred_with_input(
input_dict['depth'],
preds['depth'],
masks['depth'],
image_size=image_size
)[0,0].detach().cpu()
fig = plt.figure(figsize=(10, 10))
grid = ImageGrid(fig, 111, nrows_ncols=(3, 3), axes_pad=0)
grid[0].imshow(masked_rgb)
grid[1].imshow(pred_rgb2)
grid[2].imshow(denormalize(input_dict['rgb'])[0].permute(1,2,0).detach().cpu())
grid[3].imshow(masked_depth)
grid[4].imshow(pred_depth2)
grid[5].imshow(input_dict['depth'][0,0].detach().cpu())
plot_semseg_gt_masked(input_dict, masks['semseg'], grid[6], mask_value=1.0, image_size=image_size)
plot_semseg_pred_masked(input_dict['rgb'], preds['semseg'], input_dict['semseg'], masks['semseg'], grid[7], image_size=image_size)
plot_semseg_gt(input_dict, grid[8], image_size=image_size)
for ax in grid:
ax.set_xticks([])
ax.set_yticks([])
fontsize = 16
grid[0].set_title('Masked inputs', fontsize=fontsize)
grid[1].set_title('MultiMAE predictions', fontsize=fontsize)
grid[2].set_title('Original Reference', fontsize=fontsize)
grid[0].set_ylabel('RGB', fontsize=fontsize)
grid[3].set_ylabel('Depth', fontsize=fontsize)
grid[6].set_ylabel('Semantic', fontsize=fontsize)
plt.savefig('./output.png', dpi=300, bbox_inches='tight')
plt.close()
def inference(img, num_tokens, manual_mode, num_rgb, num_depth, num_semseg, seed):
num_tokens = int(588 * num_tokens / 100.0)
num_rgb = int(196 * num_rgb / 100.0)
num_depth = int(196 * num_depth / 100.0)
num_semseg = int(196 * num_semseg / 100.0)
im = Image.open(img)
# Center crop and resize RGB
image_size = 224 # Train resolution
img = TF.center_crop(TF.to_tensor(im), min(im.size))
img = TF.resize(img, image_size, interpolation=TF.InterpolationMode.BICUBIC)
# Predict depth and semseg
depth = predict_depth(img)
semseg = predict_semseg(img)
# Pre-process RGB, depth and semseg to the MultiMAE input format
input_dict = {}
# Normalize RGB
input_dict['rgb'] = TF.normalize(img, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD).unsqueeze(0)
# Normalize depth robustly
trunc_depth = torch.sort(depth.flatten())[0]
trunc_depth = trunc_depth[int(0.1 * trunc_depth.shape[0]): int(0.9 * trunc_depth.shape[0])]
depth = (depth - trunc_depth.mean()[None,None,None]) / torch.sqrt(trunc_depth.var()[None,None,None] + 1e-6)
input_dict['depth'] = depth.unsqueeze(0)
# Downsample semantic segmentation
stride = 4
semseg = TF.resize(semseg.unsqueeze(0), (semseg.shape[0] // stride, semseg.shape[1] // stride), interpolation=TF.InterpolationMode.NEAREST)
input_dict['semseg'] = semseg
# To GPU
input_dict = {k: v.to(device) for k,v in input_dict.items()}
if not manual_mode:
# Randomly sample masks
torch.manual_seed(int(time.time())) # Random mode is random
preds, masks = multimae.forward(
input_dict,
mask_inputs=True, # True if forward pass should sample random masks
num_encoded_tokens=num_tokens,
alphas=1.0
)
else:
# Randomly sample masks using the specified number of tokens per modality
torch.manual_seed(int(seed)) # change seed to resample new mask
task_masks = {domain: torch.ones(1,196).long().to(device) for domain in DOMAINS}
selected_rgb_idxs = torch.randperm(196)[:num_rgb]
selected_depth_idxs = torch.randperm(196)[:num_depth]
selected_semseg_idxs = torch.randperm(196)[:num_semseg]
task_masks['rgb'][:,selected_rgb_idxs] = 0
task_masks['depth'][:,selected_depth_idxs] = 0
task_masks['semseg'][:,selected_semseg_idxs] = 0
preds, masks = multimae.forward(
input_dict,
mask_inputs=True,
task_masks=task_masks
)
preds = {domain: pred.detach().cpu() for domain, pred in preds.items()}
masks = {domain: mask.detach().cpu() for domain, mask in masks.items()}
plot_predictions(input_dict, preds, masks)
return 'output.png'
title = "MultiMAE"
description = "Gradio demo for MultiMAE: Multi-modal Multi-task Masked Autoencoders. \
Upload your own images or try one of the examples below to explore the multi-modal masked reconstruction of a pre-trained MultiMAE model. \
Uploaded images are pseudo labeled using a DPT trained on Omnidata depth, and a Mask2Former trained on COCO. \
Choose the percentage of visible tokens using the sliders below and see how MultiMAE reconstructs the modalities!"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.01678' \
target='_blank'>MultiMAE: Multi-modal Multi-task Masked Autoencoders</a> | \
<a href='https://github.com/EPFL-VILAB/MultiMAE' target='_blank'>Github Repo</a></p>"
css = '.output-image{height: 713px !important}'
# Example images
os.system("wget https://i.imgur.com/c9ObJdK.jpg")
os.system("wget https://i.imgur.com/KTKgYKi.jpg")
os.system("wget https://i.imgur.com/lWYuRI7.jpg")
examples = [
['c9ObJdK.jpg', 15, False, 15, 15, 15, 0],
['KTKgYKi.jpg', 15, False, 15, 15, 15, 0],
['lWYuRI7.jpg', 15, False, 15, 15, 15, 0],
]
gr.Interface(
fn=inference,
inputs=[
gr.inputs.Image(label='RGB input image', type='filepath'),
gr.inputs.Slider(label='Percentage of input tokens', default=15, step=0.1, minimum=0, maximum=100),
gr.inputs.Checkbox(label='Manual mode: Check this to manually set the number of input tokens per modality using the sliders below', default=False),
gr.inputs.Slider(label='Percentage of RGB input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
gr.inputs.Slider(label='Percentage of depth input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
gr.inputs.Slider(label='Percentage of semantic input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
gr.inputs.Number(label='Random seed: Change this to sample different masks (for manual mode only)', default=0),
],
outputs=[
gr.outputs.Image(label='MultiMAE predictions', type='file')
],
css=css,
title=title,
description=description,
article=article,
examples=examples
).launch(enable_queue=True, cache_examples=False)
|