File size: 15,573 Bytes
3b49518
 
 
 
 
 
 
fdc4870
6a5dc6f
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ebf2a
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae6821
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55548
758da21
 
 
 
 
3b49518
 
 
 
 
2bde7d7
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55548
3b49518
 
a6ebf2a
3b49518
 
 
 
 
a6ebf2a
3b49518
 
 
a6ebf2a
 
 
3b49518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758da21
3b49518
 
 
 
 
 
 
 
 
7bd6dc9
81c008f
7bd6dc9
 
758da21
 
 
7bd6dc9
3b49518
 
 
 
 
758da21
a6ebf2a
758da21
 
 
ef5c532
3b49518
 
 
 
 
 
 
 
 
5a55548
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import sys, os
import torch
TORCH_VERSION = ".".join(torch.__version__.split(".")[:2])
CUDA_VERSION = torch.__version__.split("+")[-1]
print("torch: ", TORCH_VERSION, "; cuda: ", CUDA_VERSION)
# Install detectron2 that matches the above pytorch version
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
os.system(f'pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/{CUDA_VERSION}/torch{TORCH_VERSION}/index.html')
os.system("pip install jinja2")
os.system("pip install git+https://github.com/cocodataset/panopticapi.git")

# Imports
import gradio as gr
import detectron2
from detectron2.utils.logger import setup_logger
import numpy as np
import cv2
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torchvision import datasets, transforms
from einops import rearrange
from PIL import Image
import imutils
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from tqdm import tqdm
import random
from functools import partial
import time

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer, ColorMode
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import add_deeplab_config
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic")

# Import Mask2Former
from mask2former import add_maskformer2_config

# DPT dependencies for depth pseudo labeling
from dpt.models import DPTDepthModel

from multimae.input_adapters import PatchedInputAdapter, SemSegInputAdapter
from multimae.output_adapters import SpatialOutputAdapter
from multimae.multimae import pretrain_multimae_base
from utils.data_constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD

torch.set_grad_enabled(False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device: {device}')


# Initialize COCO Mask2Former
cfg = get_cfg()
cfg.MODEL.DEVICE='cpu'
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
cfg.merge_from_file("mask2former/configs/coco/panoptic-segmentation/swin/maskformer2_swin_small_bs16_50ep.yaml")
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/maskformer/mask2former/coco/panoptic/maskformer2_swin_small_bs16_50ep/model_final_a407fd.pkl'
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = True
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True
semseg_model = DefaultPredictor(cfg)

def predict_semseg(img):
  return semseg_model(255*img.permute(1,2,0).numpy())['sem_seg'].argmax(0)

def plot_semseg(img, semseg, ax):
  v = Visualizer(img.permute(1,2,0), coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
  semantic_result = v.draw_sem_seg(semseg.cpu()).get_image()
  ax.imshow(semantic_result)


# Initialize Omnidata depth model
os.system("wget https://datasets.epfl.ch/vilab/iccv21/weights/omnidata_rgb2depth_dpt_hybrid.pth -P pretrained_models")
omnidata_ckpt = torch.load('./pretrained_models/omnidata_rgb2depth_dpt_hybrid.pth', map_location='cpu')
depth_model = DPTDepthModel()
depth_model.load_state_dict(omnidata_ckpt)
depth_model = depth_model.to(device).eval()

def predict_depth(img):
  depth_model_input = (img.unsqueeze(0) - 0.5) / 0.5
  return depth_model(depth_model_input.to(device))


# MultiMAE model setup
DOMAIN_CONF = {
    'rgb': {
        'input_adapter': partial(PatchedInputAdapter, num_channels=3, stride_level=1),
        'output_adapter': partial(SpatialOutputAdapter, num_channels=3, stride_level=1),
    },
    'depth': {
        'input_adapter': partial(PatchedInputAdapter, num_channels=1, stride_level=1),
        'output_adapter': partial(SpatialOutputAdapter, num_channels=1, stride_level=1),
    },
    'semseg': {
        'input_adapter': partial(SemSegInputAdapter, num_classes=133,
                                 dim_class_emb=64, interpolate_class_emb=False, stride_level=4),
        'output_adapter': partial(SpatialOutputAdapter, num_channels=133, stride_level=4),
    },
}
DOMAINS = ['rgb', 'depth', 'semseg']

input_adapters = {
    domain: dinfo['input_adapter'](
        patch_size_full=16,
    )
    for domain, dinfo in DOMAIN_CONF.items()
}
output_adapters = {
    domain: dinfo['output_adapter'](
        patch_size_full=16,
        dim_tokens=256,
        use_task_queries=True,
        depth=2,
        context_tasks=DOMAINS,
        task=domain
    )
    for domain, dinfo in DOMAIN_CONF.items()
}

multimae = pretrain_multimae_base(
    input_adapters=input_adapters,
    output_adapters=output_adapters,
)

CKPT_URL = 'https://github.com/EPFL-VILAB/MultiMAE/releases/download/pretrained-weights/multimae-b_98_rgb+-depth-semseg_1600e_multivit-afff3f8c.pth'
ckpt = torch.hub.load_state_dict_from_url(CKPT_URL, map_location='cpu')
multimae.load_state_dict(ckpt['model'], strict=False)
multimae = multimae.to(device).eval()


# Plotting

def get_masked_image(img, mask, image_size=224, patch_size=16, mask_value=0.0):
    img_token = rearrange(
        img.detach().cpu(),
        'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
        ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
    )
    img_token[mask.detach().cpu()!=0] = mask_value
    img = rearrange(
        img_token,
        'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
        ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
    )
    return img


def denormalize(img, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD):
    return TF.normalize(
        img.clone(),
        mean= [-m/s for m, s in zip(mean, std)],
        std= [1/s for s in std]
    )

def plot_semseg_gt(input_dict, ax=None, image_size=224):
    metadata = MetadataCatalog.get("coco_2017_val_panoptic")
    instance_mode = ColorMode.IMAGE
    img_viz = 255 * denormalize(input_dict['rgb'].detach().cpu())[0].permute(1,2,0)
    semseg = F.interpolate(
        input_dict['semseg'].unsqueeze(0).cpu().float(), size=image_size, mode='nearest'
    ).long()[0,0]
    visualizer = Visualizer(img_viz, metadata, instance_mode=instance_mode, scale=1)
    visualizer.draw_sem_seg(semseg)
    if ax is not None:
        ax.imshow(visualizer.get_output().get_image())
    else:
        return visualizer.get_output().get_image()


def plot_semseg_gt_masked(input_dict, mask, ax=None, mask_value=1.0, image_size=224):
    img = plot_semseg_gt(input_dict, image_size=image_size)
    img = torch.LongTensor(img).permute(2,0,1).unsqueeze(0)
    masked_img = get_masked_image(img.float()/255.0, mask, image_size=image_size, patch_size=16, mask_value=mask_value)
    masked_img = masked_img[0].permute(1,2,0)

    if ax is not None:
        ax.imshow(masked_img)
    else:
        return masked_img


def get_pred_with_input(gt, pred, mask, image_size=224, patch_size=16):
    gt_token = rearrange(
        gt.detach().cpu(),
        'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
        ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
    )
    pred_token = rearrange(
        pred.detach().cpu(),
        'b c (nh ph) (nw pw) -> b (nh nw) (c ph pw)',
        ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
    )
    pred_token[mask.detach().cpu()==0] = gt_token[mask.detach().cpu()==0]
    img = rearrange(
        pred_token,
        'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
        ph=patch_size, pw=patch_size, nh=image_size//patch_size, nw=image_size//patch_size
    )
    return img


def plot_semseg_pred_masked(rgb, semseg_preds, semseg_gt, mask, ax=None, image_size=224):
    metadata = MetadataCatalog.get("coco_2017_val_panoptic")
    instance_mode = ColorMode.IMAGE
    img_viz = 255 * denormalize(rgb.detach().cpu())[0].permute(1,2,0)

    semseg = get_pred_with_input(
        semseg_gt.unsqueeze(1),
        semseg_preds.argmax(1).unsqueeze(1),
        mask,
        image_size=image_size//4,
        patch_size=4
    )

    semseg = F.interpolate(semseg.float(), size=image_size, mode='nearest')[0,0].long()

    visualizer = Visualizer(img_viz, metadata, instance_mode=instance_mode, scale=1)
    visualizer.draw_sem_seg(semseg)
    if ax is not None:
        ax.imshow(visualizer.get_output().get_image())
    else:
        return visualizer.get_output().get_image()

def plot_predictions(input_dict, preds, masks, image_size=224):

    masked_rgb = get_masked_image(
        denormalize(input_dict['rgb']),
        masks['rgb'],
        image_size=image_size,
        mask_value=1.0
    )[0].permute(1,2,0).detach().cpu()
    masked_depth = get_masked_image(
        input_dict['depth'],
        masks['depth'],
        image_size=image_size,
        mask_value=np.nan
    )[0,0].detach().cpu()

    pred_rgb = denormalize(preds['rgb'])[0].permute(1,2,0).clamp(0,1)
    pred_depth = preds['depth'][0,0].detach().cpu()

    pred_rgb2 = get_pred_with_input(
        denormalize(input_dict['rgb']),
        denormalize(preds['rgb']).clamp(0,1),
        masks['rgb'],
        image_size=image_size
    )[0].permute(1,2,0).detach().cpu()
    pred_depth2 = get_pred_with_input(
        input_dict['depth'],
        preds['depth'],
        masks['depth'],
        image_size=image_size
    )[0,0].detach().cpu()

    fig = plt.figure(figsize=(10, 10))
    grid = ImageGrid(fig, 111, nrows_ncols=(3, 3), axes_pad=0)

    grid[0].imshow(masked_rgb)
    grid[1].imshow(pred_rgb2)
    grid[2].imshow(denormalize(input_dict['rgb'])[0].permute(1,2,0).detach().cpu())

    grid[3].imshow(masked_depth)
    grid[4].imshow(pred_depth2)
    grid[5].imshow(input_dict['depth'][0,0].detach().cpu())

    plot_semseg_gt_masked(input_dict, masks['semseg'], grid[6], mask_value=1.0, image_size=image_size)
    plot_semseg_pred_masked(input_dict['rgb'], preds['semseg'], input_dict['semseg'], masks['semseg'], grid[7], image_size=image_size)
    plot_semseg_gt(input_dict, grid[8], image_size=image_size)

    for ax in grid:
        ax.set_xticks([])
        ax.set_yticks([])

    fontsize = 16
    grid[0].set_title('Masked inputs', fontsize=fontsize)
    grid[1].set_title('MultiMAE predictions', fontsize=fontsize)
    grid[2].set_title('Original Reference', fontsize=fontsize)
    grid[0].set_ylabel('RGB', fontsize=fontsize)
    grid[3].set_ylabel('Depth', fontsize=fontsize)
    grid[6].set_ylabel('Semantic', fontsize=fontsize)

    plt.savefig('./output.png', dpi=300, bbox_inches='tight')
    plt.close()


def inference(img, num_tokens, manual_mode, num_rgb, num_depth, num_semseg, seed):
    num_tokens = int(588 * num_tokens / 100.0)
    num_rgb = int(196 * num_rgb / 100.0)
    num_depth = int(196 * num_depth / 100.0)
    num_semseg = int(196 * num_semseg / 100.0)

    im = Image.open(img)

    # Center crop and resize RGB
    image_size = 224 # Train resolution
    img = TF.center_crop(TF.to_tensor(im), min(im.size))
    img = TF.resize(img, image_size, interpolation=TF.InterpolationMode.BICUBIC)

    # Predict depth and semseg
    depth = predict_depth(img)
    semseg = predict_semseg(img)


    # Pre-process RGB, depth and semseg to the MultiMAE input format
    input_dict = {}

    # Normalize RGB
    input_dict['rgb'] = TF.normalize(img, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD).unsqueeze(0)

    # Normalize depth robustly
    trunc_depth = torch.sort(depth.flatten())[0]
    trunc_depth = trunc_depth[int(0.1 * trunc_depth.shape[0]): int(0.9 * trunc_depth.shape[0])]
    depth = (depth - trunc_depth.mean()[None,None,None]) / torch.sqrt(trunc_depth.var()[None,None,None] + 1e-6)
    input_dict['depth'] = depth.unsqueeze(0)

    # Downsample semantic segmentation
    stride = 4
    semseg = TF.resize(semseg.unsqueeze(0), (semseg.shape[0] // stride, semseg.shape[1] // stride), interpolation=TF.InterpolationMode.NEAREST)
    input_dict['semseg'] = semseg

    # To GPU
    input_dict = {k: v.to(device) for k,v in input_dict.items()}


    if not manual_mode:
        # Randomly sample masks

        torch.manual_seed(int(time.time())) # Random mode is random

        preds, masks = multimae.forward(
            input_dict,
            mask_inputs=True, # True if forward pass should sample random masks
            num_encoded_tokens=num_tokens,
            alphas=1.0
        )
    else:
        # Randomly sample masks using the specified number of tokens per modality

        torch.manual_seed(int(seed)) # change seed to resample new mask

        task_masks = {domain: torch.ones(1,196).long().to(device) for domain in DOMAINS}
        selected_rgb_idxs = torch.randperm(196)[:num_rgb]
        selected_depth_idxs = torch.randperm(196)[:num_depth]
        selected_semseg_idxs = torch.randperm(196)[:num_semseg]
        task_masks['rgb'][:,selected_rgb_idxs] = 0
        task_masks['depth'][:,selected_depth_idxs] = 0
        task_masks['semseg'][:,selected_semseg_idxs] = 0

        preds, masks = multimae.forward(
            input_dict,
            mask_inputs=True,
            task_masks=task_masks
        )

    preds = {domain: pred.detach().cpu() for domain, pred in preds.items()}
    masks = {domain: mask.detach().cpu() for domain, mask in masks.items()}

    plot_predictions(input_dict, preds, masks)

    return 'output.png'


title = "MultiMAE"
description = "Gradio demo for MultiMAE: Multi-modal Multi-task Masked Autoencoders. \
    Upload your own images or try one of the examples below to explore the multi-modal masked reconstruction of a pre-trained MultiMAE model. \
    Uploaded images are pseudo labeled using a DPT trained on Omnidata depth, and a Mask2Former trained on COCO. \
    Choose the percentage of visible tokens using the sliders below and see how MultiMAE reconstructs the modalities!"

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.01678' \
           target='_blank'>MultiMAE: Multi-modal Multi-task Masked Autoencoders</a> | \
           <a href='https://github.com/EPFL-VILAB/MultiMAE' target='_blank'>Github Repo</a></p>"

css = '.output-image{height: 713px !important}'

# Example images
os.system("wget https://i.imgur.com/c9ObJdK.jpg")
os.system("wget https://i.imgur.com/KTKgYKi.jpg")
os.system("wget https://i.imgur.com/lWYuRI7.jpg")

examples = [
    ['c9ObJdK.jpg', 15, False, 15, 15, 15, 0],
    ['KTKgYKi.jpg', 15, False, 15, 15, 15, 0],
    ['lWYuRI7.jpg', 15, False, 15, 15, 15, 0],
]

gr.Interface(
    fn=inference,
    inputs=[
        gr.inputs.Image(label='RGB input image', type='filepath'),
        gr.inputs.Slider(label='Percentage of input tokens', default=15, step=0.1, minimum=0, maximum=100),
        gr.inputs.Checkbox(label='Manual mode: Check this to manually set the number of input tokens per modality using the sliders below', default=False),
        gr.inputs.Slider(label='Percentage of RGB input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
        gr.inputs.Slider(label='Percentage of depth input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
        gr.inputs.Slider(label='Percentage of semantic input tokens (for manual mode only)', default=15, step=0.1, minimum=0, maximum=100),
        gr.inputs.Number(label='Random seed: Change this to sample different masks (for manual mode only)', default=0),
    ],
    outputs=[
        gr.outputs.Image(label='MultiMAE predictions', type='file')
    ],
    css=css,
    title=title,
    description=description,
    article=article,
    examples=examples
).launch(enable_queue=True, cache_examples=False)