Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.fft as fft | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from ...image_processor import PipelineImageInput, VaeImageProcessor | |
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | |
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel | |
from ...models.lora import adjust_lora_scale_text_encoder | |
from ...models.unets.unet_motion_model import MotionAdapter | |
from ...schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from ...utils import ( | |
USE_PEFT_BACKEND, | |
BaseOutput, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler | |
>>> from diffusers.utils import export_to_gif | |
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | |
>>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter) | |
>>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False) | |
>>> output = pipe(prompt="A corgi walking in the park") | |
>>> frames = output.frames[0] | |
>>> export_to_gif(frames, "animation.gif") | |
``` | |
""" | |
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): | |
batch_size, channels, num_frames, height, width = video.shape | |
outputs = [] | |
for batch_idx in range(batch_size): | |
batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
batch_output = processor.postprocess(batch_vid, output_type) | |
outputs.append(batch_output) | |
if output_type == "np": | |
outputs = np.stack(outputs) | |
elif output_type == "pt": | |
outputs = torch.stack(outputs) | |
elif not output_type == "pil": | |
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]") | |
return outputs | |
def _get_freeinit_freq_filter( | |
shape: Tuple[int, ...], | |
device: Union[str, torch.dtype], | |
filter_type: str, | |
order: float, | |
spatial_stop_frequency: float, | |
temporal_stop_frequency: float, | |
) -> torch.Tensor: | |
r"""Returns the FreeInit filter based on filter type and other input conditions.""" | |
T, H, W = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if spatial_stop_frequency == 0 or temporal_stop_frequency == 0: | |
return mask | |
if filter_type == "butterworth": | |
def retrieve_mask(x): | |
return 1 / (1 + (x / spatial_stop_frequency**2) ** order) | |
elif filter_type == "gaussian": | |
def retrieve_mask(x): | |
return math.exp(-1 / (2 * spatial_stop_frequency**2) * x) | |
elif filter_type == "ideal": | |
def retrieve_mask(x): | |
return 1 if x <= spatial_stop_frequency * 2 else 0 | |
else: | |
raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal") | |
for t in range(T): | |
for h in range(H): | |
for w in range(W): | |
d_square = ( | |
((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / T - 1)) ** 2 | |
+ (2 * h / H - 1) ** 2 | |
+ (2 * w / W - 1) ** 2 | |
) | |
mask[..., t, h, w] = retrieve_mask(d_square) | |
return mask.to(device) | |
def _freq_mix_3d(x: torch.Tensor, noise: torch.Tensor, LPF: torch.Tensor) -> torch.Tensor: | |
r"""Noise reinitialization.""" | |
# FFT | |
x_freq = fft.fftn(x, dim=(-3, -2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) | |
noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) | |
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) | |
# frequency mix | |
HPF = 1 - LPF | |
x_freq_low = x_freq * LPF | |
noise_freq_high = noise_freq * HPF | |
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain | |
# IFFT | |
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) | |
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real | |
return x_mixed | |
class AnimateDiffPipelineOutput(BaseOutput): | |
frames: Union[torch.Tensor, np.ndarray] | |
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin): | |
r""" | |
Pipeline for text-to-video generation. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer (`CLIPTokenizer`): | |
A [`~transformers.CLIPTokenizer`] to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. | |
motion_adapter ([`MotionAdapter`]): | |
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
_optional_components = ["feature_extractor", "image_encoder"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
motion_adapter: MotionAdapter, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
feature_extractor: CLIPImageProcessor = None, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
): | |
super().__init__() | |
unet = UNetMotionModel.from_unet2d(unet, motion_adapter) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
motion_adapter=motion_adapter, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents | |
def decode_latents(self, latents): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
batch_size, channels, num_frames, height, width = latents.shape | |
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | |
image = self.vae.decode(latents).sample | |
video = ( | |
image[None, :] | |
.reshape( | |
( | |
batch_size, | |
num_frames, | |
-1, | |
) | |
+ image.shape[2:] | |
) | |
.permute(0, 2, 1, 3, 4) | |
) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
video = video.float() | |
return video | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu | |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | |
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | |
The suffixes after the scaling factors represent the stages where they are being applied. | |
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | |
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
Args: | |
s1 (`float`): | |
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
mitigate "oversmoothing effect" in the enhanced denoising process. | |
s2 (`float`): | |
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
mitigate "oversmoothing effect" in the enhanced denoising process. | |
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
""" | |
if not hasattr(self, "unet"): | |
raise ValueError("The pipeline must have `unet` for using FreeU.") | |
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu | |
def disable_freeu(self): | |
"""Disables the FreeU mechanism if enabled.""" | |
self.unet.disable_freeu() | |
def free_init_enabled(self): | |
return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None | |
def enable_free_init( | |
self, | |
num_iters: int = 3, | |
use_fast_sampling: bool = False, | |
method: str = "butterworth", | |
order: int = 4, | |
spatial_stop_frequency: float = 0.25, | |
temporal_stop_frequency: float = 0.25, | |
generator: torch.Generator = None, | |
): | |
"""Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537. | |
This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit). | |
Args: | |
num_iters (`int`, *optional*, defaults to `3`): | |
Number of FreeInit noise re-initialization iterations. | |
use_fast_sampling (`bool`, *optional*, defaults to `False`): | |
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables | |
the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`. | |
method (`str`, *optional*, defaults to `butterworth`): | |
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the | |
FreeInit low pass filter. | |
order (`int`, *optional*, defaults to `4`): | |
Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour | |
whereas lower values lead to `gaussian` method behaviour. | |
spatial_stop_frequency (`float`, *optional*, defaults to `0.25`): | |
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in | |
the original implementation. | |
temporal_stop_frequency (`float`, *optional*, defaults to `0.25`): | |
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in | |
the original implementation. | |
generator (`torch.Generator`, *optional*, defaults to `0.25`): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
FreeInit generation deterministic. | |
""" | |
self._free_init_num_iters = num_iters | |
self._free_init_use_fast_sampling = use_fast_sampling | |
self._free_init_method = method | |
self._free_init_order = order | |
self._free_init_spatial_stop_frequency = spatial_stop_frequency | |
self._free_init_temporal_stop_frequency = temporal_stop_frequency | |
self._free_init_generator = generator | |
def disable_free_init(self): | |
"""Disables the FreeInit mechanism if enabled.""" | |
self._free_init_num_iters = None | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents | |
def prepare_latents( | |
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def _denoise_loop( | |
self, | |
timesteps, | |
num_inference_steps, | |
do_classifier_free_guidance, | |
guidance_scale, | |
num_warmup_steps, | |
prompt_embeds, | |
negative_prompt_embeds, | |
latents, | |
cross_attention_kwargs, | |
added_cond_kwargs, | |
extra_step_kwargs, | |
callback, | |
callback_steps, | |
callback_on_step_end, | |
callback_on_step_end_tensor_inputs, | |
): | |
"""Denoising loop for AnimateDiff.""" | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
return latents | |
def _free_init_loop( | |
self, | |
height, | |
width, | |
num_frames, | |
num_channels_latents, | |
batch_size, | |
num_videos_per_prompt, | |
denoise_args, | |
device, | |
): | |
"""Denoising loop for AnimateDiff using FreeInit noise reinitialization technique.""" | |
latents = denoise_args.get("latents") | |
prompt_embeds = denoise_args.get("prompt_embeds") | |
timesteps = denoise_args.get("timesteps") | |
num_inference_steps = denoise_args.get("num_inference_steps") | |
latent_shape = ( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
free_init_filter_shape = ( | |
1, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
free_init_freq_filter = _get_freeinit_freq_filter( | |
shape=free_init_filter_shape, | |
device=device, | |
filter_type=self._free_init_method, | |
order=self._free_init_order, | |
spatial_stop_frequency=self._free_init_spatial_stop_frequency, | |
temporal_stop_frequency=self._free_init_temporal_stop_frequency, | |
) | |
with self.progress_bar(total=self._free_init_num_iters) as free_init_progress_bar: | |
for i in range(self._free_init_num_iters): | |
# For the first FreeInit iteration, the original latent is used without modification. | |
# Subsequent iterations apply the noise reinitialization technique. | |
if i == 0: | |
initial_noise = latents.detach().clone() | |
else: | |
current_diffuse_timestep = ( | |
self.scheduler.config.num_train_timesteps - 1 | |
) # diffuse to t=999 noise level | |
diffuse_timesteps = torch.full((batch_size,), current_diffuse_timestep).long() | |
z_T = self.scheduler.add_noise( | |
original_samples=latents, noise=initial_noise, timesteps=diffuse_timesteps.to(device) | |
).to(dtype=torch.float32) | |
z_rand = randn_tensor( | |
shape=latent_shape, | |
generator=self._free_init_generator, | |
device=device, | |
dtype=torch.float32, | |
) | |
latents = _freq_mix_3d(z_T, z_rand, LPF=free_init_freq_filter) | |
latents = latents.to(prompt_embeds.dtype) | |
# Coarse-to-Fine Sampling for faster inference (can lead to lower quality) | |
if self._free_init_use_fast_sampling: | |
current_num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (i + 1)) | |
self.scheduler.set_timesteps(current_num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
denoise_args.update({"timesteps": timesteps, "num_inference_steps": current_num_inference_steps}) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
denoise_args.update({"latents": latents, "num_warmup_steps": num_warmup_steps}) | |
latents = self._denoise_loop(**denoise_args) | |
free_init_progress_bar.update() | |
return latents | |
def _retrieve_video_frames(self, latents, output_type, return_dict): | |
"""Helper function to handle latents to output conversion.""" | |
if output_type == "latent": | |
return AnimateDiffPipelineOutput(frames=latents) | |
video_tensor = self.decode_latents(latents) | |
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | |
if not return_dict: | |
return (video,) | |
return AnimateDiffPipelineOutput(frames=video) | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_frames: Optional[int] = 16, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated video. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated video. | |
num_frames (`int`, *optional*, defaults to 16): | |
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
amounts to 2 seconds of video. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
`(batch_size, num_channel, num_frames, height, width)`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): | |
Optional image input to work with IP Adapters. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or | |
`np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeine class. | |
Examples: | |
Returns: | |
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None: | |
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True | |
image_embeds, negative_image_embeds = self.encode_image( | |
ip_adapter_image, device, num_videos_per_prompt, output_hidden_state | |
) | |
if self.do_classifier_free_guidance: | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Add image embeds for IP-Adapter | |
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
denoise_args = { | |
"timesteps": timesteps, | |
"num_inference_steps": num_inference_steps, | |
"do_classifier_free_guidance": self.do_classifier_free_guidance, | |
"guidance_scale": guidance_scale, | |
"num_warmup_steps": num_warmup_steps, | |
"prompt_embeds": prompt_embeds, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"latents": latents, | |
"cross_attention_kwargs": self.cross_attention_kwargs, | |
"added_cond_kwargs": added_cond_kwargs, | |
"extra_step_kwargs": extra_step_kwargs, | |
"callback": callback, | |
"callback_steps": callback_steps, | |
"callback_on_step_end": callback_on_step_end, | |
"callback_on_step_end_tensor_inputs": callback_on_step_end_tensor_inputs, | |
} | |
if self.free_init_enabled: | |
latents = self._free_init_loop( | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
num_channels_latents=num_channels_latents, | |
batch_size=batch_size, | |
num_videos_per_prompt=num_videos_per_prompt, | |
denoise_args=denoise_args, | |
device=device, | |
) | |
else: | |
latents = self._denoise_loop(**denoise_args) | |
video = self._retrieve_video_frames(latents, output_type, return_dict) | |
# 9. Offload all models | |
self.maybe_free_model_hooks() | |
return video | |