ViPer / diffusers /pipelines /auto_pipeline.py
miaw1419's picture
Upload 472 files
0aaa1f1 verified
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from collections import OrderedDict
from huggingface_hub.utils import validate_hf_hub_args
from ..configuration_utils import ConfigMixin
from .controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyImg2ImgPipeline,
KandinskyInpaintCombinedPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
)
from .kandinsky2_2 import (
KandinskyV22CombinedPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22Img2ImgPipeline,
KandinskyV22InpaintCombinedPipeline,
KandinskyV22InpaintPipeline,
KandinskyV22Pipeline,
)
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .pixart_alpha import PixArtAlphaPipeline
from .stable_diffusion import (
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
)
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
)
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionPipeline),
("stable-diffusion-xl", StableDiffusionXLPipeline),
("if", IFPipeline),
("kandinsky", KandinskyCombinedPipeline),
("kandinsky22", KandinskyV22CombinedPipeline),
("kandinsky3", Kandinsky3Pipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
("wuerstchen", WuerstchenCombinedPipeline),
("lcm", LatentConsistencyModelPipeline),
("pixart", PixArtAlphaPipeline),
]
)
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionImg2ImgPipeline),
("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
("if", IFImg2ImgPipeline),
("kandinsky", KandinskyImg2ImgCombinedPipeline),
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
("kandinsky3", Kandinsky3Img2ImgPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
("lcm", LatentConsistencyModelImg2ImgPipeline),
]
)
AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionInpaintPipeline),
("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
("if", IFInpaintingPipeline),
("kandinsky", KandinskyInpaintCombinedPipeline),
("kandinsky22", KandinskyV22InpaintCombinedPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
]
)
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyPipeline),
("kandinsky22", KandinskyV22Pipeline),
("wuerstchen", WuerstchenDecoderPipeline),
]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyImg2ImgPipeline),
("kandinsky22", KandinskyV22Img2ImgPipeline),
]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyInpaintPipeline),
("kandinsky22", KandinskyV22InpaintPipeline),
]
)
SUPPORTED_TASKS_MAPPINGS = [
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
AUTO_INPAINT_PIPELINES_MAPPING,
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
]
def _get_connected_pipeline(pipeline_cls):
# for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
def get_model(pipeline_class_name):
for task_mapping in SUPPORTED_TASKS_MAPPINGS:
for model_name, pipeline in task_mapping.items():
if pipeline.__name__ == pipeline_class_name:
return model_name
model_name = get_model(pipeline_class_name)
if model_name is not None:
task_class = mapping.get(model_name, None)
if task_class is not None:
return task_class
if throw_error_if_not_exist:
raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
def _get_signature_keys(obj):
parameters = inspect.signature(obj.__init__).parameters
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
expected_modules = set(required_parameters.keys()) - {"self"}
return expected_modules, optional_parameters
class AutoPipelineForText2Image(ConfigMixin):
r"""
[`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
>>> image = pipe_t2i(prompt).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNet", "").replace("Pipeline", "ControlNetPipeline"),
)
else:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(text_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in text_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = text_2_image_cls(**text_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForImage2Image(ConfigMixin):
r"""
[`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForImage2Image
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the
image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
>>> image = pipe_i2i(prompt, image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("ControlNet", "").replace(
"Img2ImgPipeline", "ControlNetImg2ImgPipeline"
),
)
else:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(image_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config attribute that were not expected by original pipeline is stored as its private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in image_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = image_2_image_cls(**image_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForInpainting(ConfigMixin):
r"""
[`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForInpainting
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
additional memoery.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
... )
>>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
>>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("ControlNet", "").replace(
"InpaintPipeline", "ControlNetInpaintPipeline"
),
)
else:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = _get_signature_keys(inpainting_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in inpainting_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = inpainting_cls(**inpainting_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model