EXCAI's picture
bugfix
6b2ad92
raw
history blame
51.7 kB
import os
import sys
import math
from tqdm import tqdm
from PIL import Image, ImageDraw
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
try:
sys.path.append(os.path.join(project_root, "submodules/MoGe"))
os.environ["TOKENIZERS_PARALLELISM"] = "false"
except:
print("Warning: MoGe not found, motion transfer will not be applied")
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import FluxControlPipeline, CogVideoXDPMScheduler
from diffusers.utils import export_to_video, load_image, load_video
from models.spatracker.predictor import SpaTrackerPredictor
from models.spatracker.utils.visualizer import Visualizer
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking
from submodules.MoGe.moge.model import MoGeModel
from image_gen_aux import DepthPreprocessor
from moviepy.editor import ImageSequenceClip
class DiffusionAsShaderPipeline:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize MotionTransfer class
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
# video parameters
self.max_depth = 65.0
self.fps = 8
# camera parameters
self.camera_motion=None
self.fov=55
# device
self.device = f"cuda:{gpu_id}"
torch.cuda.set_device(gpu_id)
self.dtype = torch.bfloat16
# files
self.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
@torch.no_grad()
def _infer(
self,
prompt: str,
model_path: str,
tracking_tensor: torch.Tensor = None,
image_tensor: torch.Tensor = None, # [C,H,W] in range [0,1]
output_path: str = "./output.mp4",
num_inference_steps: int = 25,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
fps: int = 24,
seed: int = 42,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1]
- image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1]
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process.
- guidance_scale (float): The scale for classifier-free guidance.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation.
- seed (int): The seed for reproducibility.
"""
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import AutoencoderKLCogVideoX, CogVideoXDDIMScheduler
from models.cogvideox_tracking import CogVideoXTransformer3DModelTracking
vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae")
text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder")
tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer")
transformer = CogVideoXTransformer3DModelTracking.from_pretrained(model_path, subfolder="transformer")
scheduler = CogVideoXDDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = CogVideoXImageToVideoPipelineTracking(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler
)
# Convert tensor to PIL Image
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
image = Image.fromarray(image_np)
height, width = image.height, image.width
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
self.dtype = dtype
# Process tracking tensor
tracking_maps = tracking_tensor.float() # [T, C, H, W]
tracking_maps = tracking_maps.to(device=self.device, dtype=dtype)
tracking_first_frame = tracking_maps[0:1] # Get first frame as [1, C, H, W]
height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3]
# 2. Set Scheduler.
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to(self.device, dtype=dtype)
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
print("Encoding tracking maps")
tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W]
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
# 4. Generate the video frames based on the prompt.
video_generate = pipe(
prompt=prompt,
negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
image=image,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
tracking_maps=tracking_maps,
tracking_image=tracking_first_frame,
height=height,
width=width,
).frames[0]
# 5. Export the generated frames to a video file. fps must be 8 for original video.
output_path = output_path if output_path else f"result.mp4"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_to_video(video_generate, output_path, fps=fps)
#========== camera parameters ==========#
def _set_camera_motion(self, camera_motion):
self.camera_motion = camera_motion
##============= SpatialTracker =============##
def generate_tracking_spatracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
str: Path to tracking video
"""
print("Loading tracking models...")
# Load tracking model
tracker = SpaTrackerPredictor(
checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'),
interp_shape=(384, 576),
seq_length=12
).to(self.device)
# Load depth model
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
video_depths = []
for i in range(video_tensor.shape[0]):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device)
# print("Video depth shape:", video_depth.shape)
segm_mask = np.ones((480, 720), dtype=np.uint8)
pred_tracks, pred_visibility, T_Firsts = tracker(
video * 255,
video_depth=video_depth,
grid_size=density,
backward_tracking=False,
depth_predictor=None,
grid_query_frame=0,
segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device),
wind_length=12,
progressive_tracking=False
)
return pred_tracks.squeeze(0), pred_visibility.squeeze(0), T_Firsts
finally:
# Clean up GPU memory
del tracker, self.depth_preprocessor
torch.cuda.empty_cache()
def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True):
video = video.unsqueeze(0).to(self.device)
vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0)
msk_query = (T_Firsts == 0)
pred_tracks = pred_tracks[:,:,msk_query.squeeze()]
pred_visibility = pred_visibility[:,:,msk_query.squeeze()]
tracking_video = vis.visualize(video=video, tracks=pred_tracks,
visibility=pred_visibility, save_video=False,
filename="temp")
tracking_video = tracking_video.squeeze(0) # [T, C, H, W]
wide_list = list(tracking_video.unbind(0))
wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list]
clip = ImageSequenceClip(wide_list, fps=self.fps)
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video.mp4")
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
# Convert tracking_video back to tensor in range [0,1]
tracking_frames = np.array(list(clip.iter_frames())) / 255.0
tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float()
return tracking_path, tracking_video
##============= MoGe =============##
def valid_mask(self, pixels, W, H):
"""Check if pixels are within valid image bounds
Args:
pixels (numpy.ndarray): Pixel coordinates of shape [N, 2]
W (int): Image width
H (int): Image height
Returns:
numpy.ndarray: Boolean mask of valid pixels
"""
return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \
(pixels[:, 1] < H))
def sort_points_by_depth(self, points, depths):
"""Sort points by depth values
Args:
points (numpy.ndarray): Points array of shape [N, 2]
depths (numpy.ndarray): Depth values of shape [N]
Returns:
tuple: (sorted_points, sorted_depths, sort_index)
"""
# Combine points and depths into a single array for sorting
combined = np.hstack((points, depths[:, None])) # Nx3 (points + depth)
# Sort by depth (last column) in descending order
sort_index = combined[:, -1].argsort()[::-1]
sorted_combined = combined[sort_index]
# Split back into points and depths
sorted_points = sorted_combined[:, :-1]
sorted_depths = sorted_combined[:, -1]
return sorted_points, sorted_depths, sort_index
def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)):
"""Draw a rectangle on the image
Args:
rgb (PIL.Image): Image to draw on
coord (tuple): Center coordinates (x, y)
side_length (int): Length of rectangle sides
color (tuple): RGB color tuple
"""
draw = ImageDraw.Draw(rgb)
# Calculate the bounding box of the rectangle
left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2)
right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2)
color = tuple(list(color))
draw.rectangle(
[left_up_point, right_down_point],
fill=tuple(color),
outline=tuple(color),
)
def visualize_tracking_moge(self, points, mask, save_tracking=True):
"""Visualize tracking results from MoGe model
Args:
points (numpy.ndarray): Points array of shape [T, H, W, 3]
mask (numpy.ndarray): Binary mask of shape [H, W]
save_tracking (bool): Whether to save tracking video
Returns:
tuple: (tracking_path, tracking_video)
- tracking_path (str): Path to saved tracking video, None if save_tracking is False
- tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1]
"""
# Create color array
T, H, W, _ = points.shape
colors = np.zeros((H, W, 3), dtype=np.uint8)
# Set R channel - based on x coordinates (smaller on the left)
colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1))
# Set G channel - based on y coordinates (smaller on the top)
colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T
# Set B channel - based on depth
z_values = points[0, :, :, 2] # get z values
inv_z = 1 / z_values # calculate 1/z
# Calculate 2% and 98% percentiles
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
# Normalize to [0,1] range
normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1)
colors[:, :, 2] = (normalized_z * 255).astype(np.uint8)
colors = colors.astype(np.uint8)
points = points.reshape(T, -1, 3)
colors = colors.reshape(-1, 3)
# Initialize list to store frames
frames = []
for i, pts_i in enumerate(tqdm(points, desc="rendering frames")):
pixels, depths = pts_i[..., :2], pts_i[..., 2]
pixels[..., 0] = pixels[..., 0] * W
pixels[..., 1] = pixels[..., 1] * H
pixels = pixels.astype(int)
valid = self.valid_mask(pixels, W, H)
frame_rgb = colors[valid]
pixels = pixels[valid]
depths = depths[valid]
img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
step = 1
sorted_pixels = sorted_pixels[::step]
sorted_rgb = frame_rgb[sort_index][::step]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=2,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
##============= CoTracker =============##
def generate_tracking_cotracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
tuple: (pred_tracks, pred_visibility)
- pred_tracks (torch.Tensor): Tracking points with depth [T, N, 3]
- pred_visibility (torch.Tensor): Visibility mask [T, N, 1]
"""
# Generate tracking points
cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to(self.device)
# Load depth model
if not hasattr(self, 'depth_preprocessor') or self.depth_preprocessor is None:
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
# Process all frames to get depth maps
video_depths = []
for i in tqdm(range(video_tensor.shape[0]), desc="estimating depth"):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device) # [T, 1, H, W]
# Get tracking points and visibility
print("tracking...")
pred_tracks, pred_visibility = cotracker(video, grid_size=density) # B T N 2, B T N 1
# Extract dimensions
B, T, N, _ = pred_tracks.shape
H, W = video_depth.shape[2], video_depth.shape[3]
# Create output tensor with depth
pred_tracks_with_depth = torch.zeros((B, T, N, 3), device=self.device)
pred_tracks_with_depth[:, :, :, :2] = pred_tracks # Copy x,y coordinates
# Vectorized approach to get depths for all points
# Reshape pred_tracks to process all batches and frames at once
flat_tracks = pred_tracks.reshape(B*T, N, 2)
# Clamp coordinates to valid image bounds
x_coords = flat_tracks[:, :, 0].clamp(0, W-1).long() # [B*T, N]
y_coords = flat_tracks[:, :, 1].clamp(0, H-1).long() # [B*T, N]
# Get depths for all points at once
# For each point in the flattened batch, get its depth from the corresponding frame
depths = torch.zeros((B*T, N), device=self.device)
for bt in range(B*T):
t = bt % T # Time index
depths[bt] = video_depth[t, 0, y_coords[bt], x_coords[bt]]
# Reshape depths back to [B, T, N] and assign to output tensor
pred_tracks_with_depth[:, :, :, 2] = depths.reshape(B, T, N)
return pred_tracks_with_depth.squeeze(0), pred_visibility.squeeze(0)
finally:
del cotracker
torch.cuda.empty_cache()
def visualize_tracking_cotracker(self, points, vis_mask=None, save_tracking=True, point_wise=10, video_size=(480, 720)):
"""Visualize tracking results from CoTracker
Args:
points (torch.Tensor): Points array of shape [T, N, 3]
vis_mask (torch.Tensor): Visibility mask of shape [T, N, 1]
save_tracking (bool): Whether to save tracking video
point_wise (int): Size of points in visualization
video_size (tuple): Render size (height, width)
Returns:
tuple: (tracking_path, tracking_video)
"""
# Move tensors to CPU and convert to numpy
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if vis_mask is not None and isinstance(vis_mask, torch.Tensor):
vis_mask = vis_mask.detach().cpu().numpy()
# Reshape if needed
if vis_mask.ndim == 3 and vis_mask.shape[2] == 1:
vis_mask = vis_mask.squeeze(-1)
T, N, _ = points.shape
H, W = video_size
if vis_mask is None:
vis_mask = np.ones((T, N), dtype=bool)
colors = np.zeros((N, 3), dtype=np.uint8)
first_frame_pts = points[0]
u_min, u_max = 0, W
u_normalized = np.clip((first_frame_pts[:, 0] - u_min) / (u_max - u_min), 0, 1)
colors[:, 0] = (u_normalized * 255).astype(np.uint8)
v_min, v_max = 0, H
v_normalized = np.clip((first_frame_pts[:, 1] - v_min) / (v_max - v_min), 0, 1)
colors[:, 1] = (v_normalized * 255).astype(np.uint8)
z_values = first_frame_pts[:, 2]
if np.all(z_values == 0):
colors[:, 2] = np.random.randint(0, 256, N, dtype=np.uint8)
else:
inv_z = 1 / (z_values + 1e-10)
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
normalized_z = np.clip((inv_z - p2) / (p98 - p2 + 1e-10), 0, 1)
colors[:, 2] = (normalized_z * 255).astype(np.uint8)
frames = []
for i in tqdm(range(T), desc="rendering frames"):
pts_i = points[i]
visibility = vis_mask[i]
pixels, depths = pts_i[visibility, :2], pts_i[visibility, 2]
pixels = pixels.astype(int)
in_frame = self.valid_mask(pixels, W, H)
pixels = pixels[in_frame]
depths = depths[in_frame]
frame_rgb = colors[visibility][in_frame]
img = Image.fromarray(np.zeros((H, W, 3), dtype=np.uint8), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
sorted_rgb = frame_rgb[sort_index]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=point_wise,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_cotracker.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, num_inference_steps=15):
"""Generate final video with motion transfer
Args:
video_tensor (torch.Tensor): Input video tensor [T,C,H,W]
fps (float): Input video FPS
tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W]
image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation
prompt (str): Generation prompt
checkpoint_path (str): Path to model checkpoint
"""
self.fps = fps
# Use first frame if no image provided
if img_cond_tensor is None:
img_cond_tensor = video_tensor[0]
# Generate final video
final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4")
self._infer(
prompt=prompt,
model_path=checkpoint_path,
tracking_tensor=tracking_tensor,
image_tensor=img_cond_tensor,
output_path=final_output,
num_inference_steps=num_inference_steps,
guidance_scale=6.0,
dtype=torch.bfloat16,
fps=self.fps
)
print(f"Final video generated successfully at: {final_output}")
def _set_object_motion(self, motion_type):
"""Set object motion type
Args:
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
"""
self.object_motion = motion_type
class FirstFrameRepainter:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize FirstFrameRepainter
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
self.device = f"cuda:{gpu_id}"
self.output_dir = output_dir
self.max_depth = 65.0
os.makedirs(output_dir, exist_ok=True)
def repaint(self, image_tensor, prompt, depth_path=None, method="dav"):
"""Repaint first frame using Flux
Args:
image_tensor (torch.Tensor): Input image tensor [C,H,W]
prompt (str): Repaint prompt
depth_path (str): Path to depth image
method (str): depth estimator, "moge" or "dav" or "zoedepth"
Returns:
torch.Tensor: Repainted image tensor [C,H,W]
"""
print("Loading Flux model...")
# Load Flux model
flux_pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16
).to(self.device)
# Get depth map
if depth_path is None:
if method == "moge":
self.moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(self.device)
depth_map = self.moge_model.infer(image_tensor.to(self.device))["depth"]
depth_map = torch.clamp(depth_map, max=self.max_depth)
depth_normalized = 1.0 - (depth_map / self.max_depth)
depth_rgb = (depth_normalized * 255).cpu().numpy().astype(np.uint8)
control_image = Image.fromarray(depth_rgb).convert("RGB")
elif method == "zoedepth":
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
control_image = self.depth_preprocessor(Image.fromarray(image_np))[0].convert("RGB")
control_image = control_image.point(lambda x: 255 - x) # the zoedepth depth is inverted
else:
self.depth_preprocessor = DepthPreprocessor.from_pretrained("depth-anything/Depth-Anything-V2-Large-hf")
self.depth_preprocessor.to(self.device)
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
control_image = self.depth_preprocessor(Image.fromarray(image_np))[0].convert("RGB")
else:
control_image = Image.open(depth_path).convert("RGB")
try:
repainted_image = flux_pipe(
prompt=prompt,
control_image=control_image,
height=480,
width=720,
num_inference_steps=30,
guidance_scale=7.5,
).images[0]
# Save repainted image
repainted_image.save(os.path.join(self.output_dir, "temp_repainted.png"))
# Convert PIL Image to tensor
transform = transforms.Compose([
transforms.ToTensor()
])
repainted_tensor = transform(repainted_image)
return repainted_tensor
finally:
# Clean up GPU memory
del flux_pipe
if method == "moge":
del self.moge_model
else:
del self.depth_preprocessor
torch.cuda.empty_cache()
class CameraMotionGenerator:
def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'):
self.motion_type = motion_type
self.frame_num = frame_num
self.fov = fov
self.device = device
self.W = W
self.H = H
self.intr = torch.tensor([
[0, 0, W / 2],
[0, 0, H / 2],
[0, 0, 1]
], dtype=torch.float32, device=device)
# if fx, fy not provided
if not fx or not fy:
fov_rad = math.radians(fov)
fx = fy = (W / 2) / math.tan(fov_rad / 2)
self.intr[0, 0] = fx
self.intr[1, 1] = fy
self.extr = torch.eye(4, device=device)
def s2w_vggt(self, points, extrinsics, intrinsics):
"""
Transform points from pixel coordinates to world coordinates
Args:
points: Point cloud data of shape [T, N, 3] in uvz format
extrinsics: Camera extrinsic matrices [B, T, 3, 4] or [T, 3, 4]
intrinsics: Camera intrinsic matrices [B, T, 3, 3] or [T, 3, 3]
Returns:
world_points: Point cloud in world coordinates [T, N, 3]
"""
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(extrinsics, torch.Tensor):
extrinsics = extrinsics.detach().cpu().numpy()
# Handle batch dimension
if extrinsics.ndim == 4: # [B, T, 3, 4]
extrinsics = extrinsics[0] # Take first batch
if isinstance(intrinsics, torch.Tensor):
intrinsics = intrinsics.detach().cpu().numpy()
# Handle batch dimension
if intrinsics.ndim == 4: # [B, T, 3, 3]
intrinsics = intrinsics[0] # Take first batch
T, N, _ = points.shape
world_points = np.zeros_like(points)
# Extract uvz coordinates
uvz = points
valid_mask = uvz[..., 2] > 0
# Create homogeneous coordinates [u, v, 1]
uv_homogeneous = np.concatenate([uvz[..., :2], np.ones((T, N, 1))], axis=-1)
# Transform from pixel to camera coordinates
for i in range(T):
K = intrinsics[i]
K_inv = np.linalg.inv(K)
R = extrinsics[i, :, :3]
t = extrinsics[i, :, 3]
R_inv = np.linalg.inv(R)
valid_indices = np.where(valid_mask[i])[0]
if len(valid_indices) > 0:
valid_uv = uv_homogeneous[i, valid_indices]
valid_z = uvz[i, valid_indices, 2]
valid_xyz_camera = valid_uv @ K_inv.T
valid_xyz_camera = valid_xyz_camera * valid_z[:, np.newaxis]
# Transform from camera to world coordinates: X_world = R^-1 * (X_camera - t)
valid_world_points = (valid_xyz_camera - t) @ R_inv.T
world_points[i, valid_indices] = valid_world_points
return world_points
def w2s_vggt(self, world_points, extrinsics, intrinsics, poses=None):
"""
Project points from world coordinates to camera view
Args:
world_points: Point cloud in world coordinates [T, N, 3]
extrinsics: Original camera extrinsic matrices [B, T, 3, 4] or [T, 3, 4]
intrinsics: Camera intrinsic matrices [B, T, 3, 3] or [T, 3, 3]
poses: Camera pose matrices [T, 4, 4], if None use first frame extrinsics
Returns:
camera_points: Point cloud in camera coordinates [T, N, 3] in uvz format
"""
if isinstance(world_points, torch.Tensor):
world_points = world_points.detach().cpu().numpy()
if isinstance(extrinsics, torch.Tensor):
extrinsics = extrinsics.detach().cpu().numpy()
if extrinsics.ndim == 4:
extrinsics = extrinsics[0]
if isinstance(intrinsics, torch.Tensor):
intrinsics = intrinsics.detach().cpu().numpy()
if intrinsics.ndim == 4:
intrinsics = intrinsics[0]
T, N, _ = world_points.shape
# If no poses provided, use first frame extrinsics
if poses is None:
pose1 = np.eye(4)
pose1[:3, :3] = extrinsics[0, :, :3]
pose1[:3, 3] = extrinsics[0, :, 3]
camera_poses = np.tile(pose1[np.newaxis, :, :], (T, 1, 1))
else:
if isinstance(poses, torch.Tensor):
camera_poses = poses.cpu().numpy()
else:
camera_poses = poses
# Scale translation by 1/5
scaled_poses = camera_poses.copy()
scaled_poses[:, :3, 3] = camera_poses[:, :3, 3] / 5.0
camera_poses = scaled_poses
# Add homogeneous coordinates
ones = np.ones([T, N, 1])
world_points_hom = np.concatenate([world_points, ones], axis=-1)
# Transform points using batch matrix multiplication
pts_cam_hom = np.matmul(world_points_hom, np.transpose(camera_poses, (0, 2, 1)))
pts_cam = pts_cam_hom[..., :3]
# Extract depth information
depths = pts_cam[..., 2:3]
valid_mask = depths[..., 0] > 0
# Normalize coordinates
normalized_pts = pts_cam / (depths + 1e-10)
# Apply intrinsic matrix for projection
pts_pixel = np.matmul(normalized_pts, np.transpose(intrinsics, (0, 2, 1)))
# Extract pixel coordinates
u = pts_pixel[..., 0:1]
v = pts_pixel[..., 1:2]
# Set invalid points to zero
u[~valid_mask] = 0
v[~valid_mask] = 0
depths[~valid_mask] = 0
# Return points in uvz format
result = np.concatenate([u, v, depths], axis=-1)
return torch.from_numpy(result)
def w2s_moge(self, pts, poses):
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
assert poses.shape[0] == self.frame_num
poses = poses.to(torch.float32).to(self.device)
T, N, _ = pts.shape # (T, N, 3)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1)
ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype)
points_world_h = torch.cat([pts, ones], dim=-1)
points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1))
points_camera = points_camera_h[:, :3, :].permute(0, 2, 1)
points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1))
uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3]
depth = points_camera[:, :, 2:3] # (T, N, 1)
uvd = torch.cat([uv, depth], dim=-1) # (T, N, 3)
return uvd
def set_intr(self, K):
if isinstance(K, np.ndarray):
K = torch.from_numpy(K)
self.intr = K.to(self.device)
def set_extr(self, extr):
if isinstance(extr, np.ndarray):
extr = torch.from_numpy(extr)
self.extr = extr.to(self.device)
def rot_poses(self, angle, axis='y'):
"""Generate a single rotation matrix
Args:
angle (float): Rotation angle in degrees
axis (str): Rotation axis ('x', 'y', or 'z')
Returns:
torch.Tensor: Single rotation matrix [4, 4]
"""
angle_rad = math.radians(angle)
cos_theta = torch.cos(torch.tensor(angle_rad))
sin_theta = torch.sin(torch.tensor(angle_rad))
if axis == 'x':
rot_mat = torch.tensor([
[1, 0, 0, 0],
[0, cos_theta, -sin_theta, 0],
[0, sin_theta, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'y':
rot_mat = torch.tensor([
[cos_theta, 0, sin_theta, 0],
[0, 1, 0, 0],
[-sin_theta, 0, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'z':
rot_mat = torch.tensor([
[cos_theta, -sin_theta, 0, 0],
[sin_theta, cos_theta, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
else:
raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.")
return rot_mat.to(self.device)
def trans_poses(self, dx, dy, dz):
"""
params:
- dx: float, displacement along x axis。
- dy: float, displacement along y axis。
- dz: float, displacement along z axis。
ret:
- matrices: torch.Tensor
"""
trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1) # (n, 4, 4)
delta_x = dx / (self.frame_num - 1)
delta_y = dy / (self.frame_num - 1)
delta_z = dz / (self.frame_num - 1)
for i in range(self.frame_num):
trans_mats[i, 0, 3] = i * delta_x
trans_mats[i, 1, 3] = i * delta_y
trans_mats[i, 2, 3] = i * delta_z
return trans_mats.to(self.device)
def _look_at(self, camera_position, target_position):
# look at direction
direction = target_position - camera_position
direction /= np.linalg.norm(direction)
# calculate rotation matrix
up = np.array([0, 1, 0])
right = np.cross(up, direction)
right /= np.linalg.norm(right)
up = np.cross(direction, right)
rotation_matrix = np.vstack([right, up, direction])
rotation_matrix = np.linalg.inv(rotation_matrix)
return rotation_matrix
def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5):
"""Generate spiral camera poses
Args:
radius (float): Base radius of the spiral
forward_ratio (float): Scale factor for forward motion
backward_ratio (float): Scale factor for backward motion
rotation_times (float): Number of rotations to complete
look_at_times (float): Scale factor for look-at point distance
Returns:
torch.Tensor: Camera poses of shape [num_frames, 4, 4]
"""
# Generate spiral trajectory
t = np.linspace(0, 1, self.frame_num)
r = np.sin(np.pi * t) * radius * rotation_times
theta = 2 * np.pi * t
# Calculate camera positions
# Limit y motion for better floor/sky view
y = r * np.cos(theta) * 0.3
x = r * np.sin(theta)
z = -r
z[z < 0] *= forward_ratio
z[z > 0] *= backward_ratio
# Set look-at target
target_pos = np.array([0, 0, radius * look_at_times])
cam_pos = np.vstack([x, y, z]).T
cam_poses = []
for pos in cam_pos:
rot_mat = self._look_at(pos, target_pos)
trans_mat = np.eye(4)
trans_mat[:3, :3] = rot_mat
trans_mat[:3, 3] = pos
cam_poses.append(trans_mat[None])
camera_poses = np.concatenate(cam_poses, axis=0)
return torch.from_numpy(camera_poses).to(self.device)
def get_default_motion(self):
"""Parse motion parameters and generate corresponding motion matrices
Supported formats:
- trans <dx> <dy> <dz> [start_frame] [end_frame]: Translation motion
- rot <axis> <angle> [start_frame] [end_frame]: Rotation motion
- spiral <radius> [start_frame] [end_frame]: Spiral motion
Multiple transformations can be combined using semicolon (;) as separator:
e.g., "trans 0 0 0.5 0 30; rot x 25 0 30; trans 0.1 0 0 30 48"
Note:
- start_frame and end_frame are optional
- frame range: 0-49 (will be clamped to this range)
- if not specified, defaults to 0-49
- frames after end_frame will maintain the final transformation
- for combined transformations, they are applied in sequence
- moving left, up and zoom out is positive in video
Returns:
torch.Tensor: Motion matrices [num_frames, 4, 4]
"""
if not isinstance(self.motion_type, str):
raise ValueError(f'camera_motion must be a string, but got {type(self.motion_type)}')
# Split combined transformations
transform_sequences = [s.strip() for s in self.motion_type.split(';')]
# Initialize the final motion matrices
final_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
# Process each transformation in sequence
for transform in transform_sequences:
params = transform.lower().split()
if not params:
continue
motion_type = params[0]
# Default frame range
start_frame = 0
end_frame = 48 # 49 frames in total (0-48)
if motion_type == 'trans':
# Parse translation parameters
if len(params) not in [4, 6]:
raise ValueError(f"trans motion requires 3 or 5 parameters: 'trans <dx> <dy> <dz>' or 'trans <dx> <dy> <dz> <start_frame> <end_frame>', got: {transform}")
dx, dy, dz = map(float, params[1:4])
if len(params) == 6:
start_frame = max(0, min(48, int(params[4])))
end_frame = max(0, min(48, int(params[5])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
# Generate current transformation
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
current_motion[frame_idx, :3, 3] = torch.tensor([dx, dy, dz], device=self.device) * t
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
elif motion_type == 'rot':
# Parse rotation parameters
if len(params) not in [3, 5]:
raise ValueError(f"rot motion requires 2 or 4 parameters: 'rot <axis> <angle>' or 'rot <axis> <angle> <start_frame> <end_frame>', got: {transform}")
axis = params[1]
if axis not in ['x', 'y', 'z']:
raise ValueError(f"Invalid rotation axis '{axis}', must be 'x', 'y' or 'z'")
angle = float(params[2])
if len(params) == 5:
start_frame = max(0, min(48, int(params[3])))
end_frame = max(0, min(48, int(params[4])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
current_angle = angle * t
current_motion[frame_idx] = self.rot_poses(current_angle, axis)
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
elif motion_type == 'spiral':
# Parse spiral motion parameters
if len(params) not in [2, 4]:
raise ValueError(f"spiral motion requires 1 or 3 parameters: 'spiral <radius>' or 'spiral <radius> <start_frame> <end_frame>', got: {transform}")
radius = float(params[1])
if len(params) == 4:
start_frame = max(0, min(48, int(params[2])))
end_frame = max(0, min(48, int(params[3])))
if start_frame > end_frame:
start_frame, end_frame = end_frame, start_frame
current_motion = torch.eye(4, device=self.device).unsqueeze(0).repeat(49, 1, 1)
spiral_motion = self.spiral_poses(radius)
for frame_idx in range(49):
if frame_idx < start_frame:
continue
elif frame_idx <= end_frame:
t = (frame_idx - start_frame) / (end_frame - start_frame)
idx = int(t * (len(spiral_motion) - 1))
current_motion[frame_idx] = spiral_motion[idx]
else:
current_motion[frame_idx] = current_motion[end_frame]
# Combine with previous transformations
final_motion = torch.matmul(final_motion, current_motion)
else:
raise ValueError(f'camera_motion type must be in [trans, spiral, rot], but got {motion_type}')
return final_motion
class ObjectMotionGenerator:
def __init__(self, device="cuda:0"):
self.device = device
self.num_frames = 49
def _get_points_in_mask(self, pred_tracks, mask):
"""Get points that lie within the mask
Args:
pred_tracks (torch.Tensor): Point trajectories [num_frames, num_points, 3]
mask (torch.Tensor): Binary mask [H, W]
Returns:
torch.Tensor: Boolean mask for selected points [num_points]
"""
first_frame_points = pred_tracks[0] # [num_points, 3]
xy_points = first_frame_points[:, :2] # [num_points, 2]
xy_pixels = xy_points.round().long()
xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1)
xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1)
points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]]
return points_in_mask
def apply_motion(self, pred_tracks, mask, motion_type, distance, num_frames=49, tracking_method="spatracker"):
self.num_frames = num_frames
pred_tracks = pred_tracks.to(self.device).float()
mask = mask.to(self.device)
template = {
'up': ('trans', torch.tensor([0, -1, 0])),
'down': ('trans', torch.tensor([0, 1, 0])),
'left': ('trans', torch.tensor([-1, 0, 0])),
'right': ('trans', torch.tensor([1, 0, 0])),
'front': ('trans', torch.tensor([0, 0, 1])),
'back': ('trans', torch.tensor([0, 0, -1])),
'rot': ('rot', None) # rotate around y axis
}
if motion_type not in template:
raise ValueError(f"unknown motion type: {motion_type}")
motion_type, base_vec = template[motion_type]
if base_vec is not None:
base_vec = base_vec.to(self.device) * distance
if tracking_method == "moge":
T, H, W, _ = pred_tracks.shape
valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & mask
points = pred_tracks[0][valid_selected].reshape(-1, 3)
else:
points_in_mask = self._get_points_in_mask(pred_tracks, mask)
points = pred_tracks[0, points_in_mask]
center = points.mean(dim=0)
motions = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1)
current_motion = torch.eye(4, device=self.device)
current_motion[:3, 3] = -center
motion_mat = torch.eye(4, device=self.device)
if motion_type == 'trans':
motion_mat[:3, 3] = base_vec * t
else: # 'rot'
angle_rad = torch.deg2rad(torch.tensor(distance * t, device=self.device))
cos_t = torch.cos(angle_rad)
sin_t = torch.sin(angle_rad)
motion_mat[0, 0] = cos_t
motion_mat[0, 2] = sin_t
motion_mat[2, 0] = -sin_t
motion_mat[2, 2] = cos_t
current_motion = motion_mat @ current_motion
current_motion[:3, 3] += center
motions.append(current_motion)
motions = torch.stack(motions) # [num_frames, 4, 4]
if tracking_method == "moge":
modified_tracks = pred_tracks.clone().reshape(T, -1, 3)
valid_selected = valid_selected.reshape([-1])
for frame_idx in range(self.num_frames):
motion_mat = motions[frame_idx]
if W > 1:
motion_mat = motion_mat.clone()
motion_mat[0, 3] /= W
motion_mat[1, 3] /= H
points = modified_tracks[frame_idx, valid_selected]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3]
return modified_tracks.reshape(T, H, W, 3)
else:
points_in_mask = self._get_points_in_mask(pred_tracks, mask)
modified_tracks = pred_tracks.clone()
for frame_idx in range(pred_tracks.shape[0]):
motion_mat = motions[frame_idx]
points = modified_tracks[frame_idx, points_in_mask]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3]
return modified_tracks