Spaces:
Runtime error
Runtime error
File size: 26,128 Bytes
5c718d1 9fcd62f 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 851dbaf 9fcd62f 5dd3935 9fcd62f aa98996 851dbaf 9fcd62f 851dbaf 5dd3935 5c718d1 5dd3935 9fcd62f 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 7a7548d 5dd3935 9fcd62f 5dd3935 9fcd62f 5dd3935 9fcd62f 5dd3935 9fcd62f 5dd3935 9fcd62f 7a7548d 5dd3935 9fcd62f 5dd3935 9fcd62f 5dd3935 aa98996 5dd3935 7a7548d 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 5dd3935 5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import collections
import os
from os.path import join
import io
import datetime
from dateutil.relativedelta import relativedelta
import matplotlib.pyplot as plt
import numpy as np
import torch.multiprocessing
import torch.nn as nn
import torch.nn.functional as F
import wget
from PIL import Image
from scipy.optimize import linear_sum_assignment
from torch._six import string_classes
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format
from torchmetrics import Metric
from torchvision import models
from torchvision import transforms as T
from torch.utils.tensorboard.summary import hparams
import matplotlib as mpl
from PIL import Image
import matplotlib as mpl
import torch.multiprocessing
import torchvision.transforms as T
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
from plotly.subplots import make_subplots
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
colors = ("red", "palegreen", "green", "steelblue", "blue", "yellow", "lightgrey")
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
mapping_class = {
"Buildings": 1,
"Cultivation": 2,
"Natural green": 3,
"Wetland": 4,
"Water": 5,
"Infrastructure": 6,
"Background": 0,
}
score_attribution = {
"Buildings" : 0.,
"Cultivation": 0.3,
"Natural green": 1.,
"Wetland": 0.9,
"Water": 0.9,
"Infrastructure": 0.,
"Background": 0.
}
bounds = list(np.arange(len(mapping_class.keys()) + 1) + 1)
cmap = mpl.colors.ListedColormap(colors)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
def compute_biodiv_score(class_image):
"""Compute the biodiversity score of an image
Args:
image (_type_): _description_
Returns:
biodiversity_score: the biodiversity score associated to the landscape of the image
"""
score_matrice = class_image.copy().astype(int)
for key in mapping_class.keys():
score_matrice = np.where(score_matrice==mapping_class[key], score_attribution[key], score_matrice)
number_of_pixel = np.prod(list(score_matrice.shape))
score = np.sum(score_matrice)/number_of_pixel
score_details = {
key: np.sum(np.where(class_image == mapping_class[key], 1, 0))
for key in mapping_class.keys()
if key not in ["background"]
}
return score, score_details
def plot_image(months, imgs, imgs_label, nb_values, scores, title="Single Date"):
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
# Scores
fig = make_subplots(
rows=1, cols=4,
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "indicator"}]],
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
)
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
fig.add_trace(go.Pie(labels = class_names,
values = [nb_values[0][key] for key in mapping_class.keys()],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
row=1, col=3)
fig.add_trace(go.Indicator(value=scores[0]), row=1, col=4)
fig.update_layout(
legend=dict(
xanchor = "center",
yanchor="top",
y=-0.1,
x = 0.5,
orientation="h")
)
fig.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+1/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+1/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis1": {
"range": [0,imgs[0].shape[1]+1/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis1": {
"range": [imgs[0].shape[0]+1/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,}
},)
fig.update_xaxes(row=1, col=2, visible=False)
fig.update_yaxes(row=1, col=2, visible=False)
fig.update_layout(title=title, title_x=0.5, title_xanchor="center")
return fig
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores, title="TimeLapse") :
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
# Scores
scatters = [
go.Scatter(
x=months[:i+1],
y=scores[:i+1],
mode="lines+markers+text",
marker_color="black",
text = [f"{score:.2f}" for score in scores[:i+1]],
textposition="top center"
) for i in range(len(scores))
]
# Scores
fig = make_subplots(
rows=1, cols=4,
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
)
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
fig.add_trace(go.Pie(labels = class_names,
values = [nb_values[0][key] for key in mapping_class.keys()],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
row=1, col=3)
fig.add_trace(scatters[0], row=1, col=4)
fig.update_traces(selector=dict(type='scatter'))
number_frames = len(imgs)
frames = [dict(
name = k,
data = [ fig2["frames"][k]["data"][0],
fig3["frames"][k]["data"][0],
go.Pie(labels = class_names,
values = [nb_values[k][key] for key in mapping_class.keys()],
marker_colors = colors,
name="Segment repartition",
textposition='inside',
texttemplate = "%{percent:.0%}",
textfont_size=14
),
scatters[k]
],
traces=[0, 1, 2, 3] # the elements of the list [0,1,2] give info on the traces in fig.data
# that are updated by the above three go.Scatter instances
) for k in range(number_frames)]
updatemenus = [dict(type='buttons',
buttons=[dict(label='Play',
method='animate',
args=[[f'{k}' for k in range(number_frames)],
dict(frame=dict(duration=500, redraw=False),
transition=dict(duration=0),
easing='linear',
fromcurrent=True,
mode='immediate'
)])],
direction= 'left',
pad=dict(t=85),
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
]
sliders = [{'yanchor': 'top',
'xanchor': 'left',
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
'transition': {'duration': 500.0, 'easing': 'linear'},
'pad': {'b': 10, 't': 50},
'len': 0.9, 'x': 0.1, 'y': 0,
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
'transition': {'duration': 0, 'easing': 'linear'}}],
'label': months[k], 'method': 'animate'} for k in range(number_frames)
]}]
fig.update(frames=frames)
for i,fr in enumerate(fig["frames"]):
fr.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"xaxis1": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis1": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
})
start_date = datetime.datetime.strptime(months[0], "%Y-%m-%d") - relativedelta(months=1)
end_date = datetime.datetime.strptime(months[-1], "%Y-%m-%d") + relativedelta(months=1)
interval = [start_date.strftime("%Y-%m-%d"),end_date.strftime("%Y-%m-%d")]
fig.update(
layout={
"xaxis": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis2": {
"range": [0,imgs[0].shape[1]+i/100000],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at x=0
'visible': False, # numbers below
},
"yaxis2": {
"range": [imgs[0].shape[0]+i/100000,0],
'showgrid': False, # thin lines in the background
'zeroline': False, # thick line at y=0
'visible': False,},
"xaxis3": {
"dtick":"M3",
"range":interval
},
"yaxis3": {
'range': [min(scores)*0.9, max(scores)* 1.1],
'showgrid': False,
'zeroline': False,
'visible': True
}
}
)
fig.update_layout(updatemenus=updatemenus,
sliders=sliders,
legend=dict(
xanchor = "center",
yanchor="top",
y=-0.1,
x = 0.5,
orientation="h")
)
fig.update_layout(margin=dict(b=0, r=0))
fig.update_layout(title=title, title_x=0.5, title_xanchor="center")
return fig
def transform_to_pil(output, alpha=0.3):
# Transform img with torch
img = torch.moveaxis(prep_for_plot(output['img']),-1,0)
img=T.ToPILImage()(img)
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
labels = np.array(output['linear_preds'])-1
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
# Overlay labels with img wit alpha
background = img.convert("RGBA")
overlay = label.convert("RGBA")
labeled_img = Image.blend(background, overlay, alpha)
return img, label, labeled_img
def prep_for_plot(img, rescale=True, resize=None):
if resize is not None:
img = F.interpolate(img.unsqueeze(0), resize, mode="bilinear")
else:
img = img.unsqueeze(0)
plot_img = unnorm(img).squeeze(0).cpu().permute(1, 2, 0)
if rescale:
plot_img = (plot_img - plot_img.min()) / (plot_img.max() - plot_img.min())
return plot_img
def add_plot(writer, name, step):
buf = io.BytesIO()
plt.savefig(buf, format='jpeg', dpi=100)
buf.seek(0)
image = Image.open(buf)
image = T.ToTensor()(image)
writer.add_image(name, image, step)
plt.clf()
plt.close()
@torch.jit.script
def shuffle(x):
return x[torch.randperm(x.shape[0])]
def add_hparams_fixed(writer, hparam_dict, metric_dict, global_step):
exp, ssi, sei = hparams(hparam_dict, metric_dict)
writer.file_writer.add_summary(exp)
writer.file_writer.add_summary(ssi)
writer.file_writer.add_summary(sei)
for k, v in metric_dict.items():
writer.add_scalar(k, v, global_step)
@torch.jit.script
def resize(classes: torch.Tensor, size: int):
return F.interpolate(classes, (size, size), mode="bilinear", align_corners=False)
def one_hot_feats(labels, n_classes):
return F.one_hot(labels, n_classes).permute(0, 3, 1, 2).to(torch.float32)
def load_model(model_type, data_dir):
if model_type == "robust_resnet50":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'imagenet_l2_3_0.pt')
if not os.path.exists(model_file):
wget.download("http://6.869.csail.mit.edu/fa19/psets19/pset6/imagenet_l2_3_0.pt",
model_file)
model_weights = torch.load(model_file)
model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
'model' in name}
model.load_state_dict(model_weights_modified)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "densecl":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'densecl_r50_coco_1600ep.pth')
if not os.path.exists(model_file):
wget.download("https://cloudstor.aarnet.edu.au/plus/s/3GapXiWuVAzdKwJ/download",
model_file)
model_weights = torch.load(model_file)
# model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
# 'model' in name}
model.load_state_dict(model_weights['state_dict'], strict=False)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "resnet50":
model = models.resnet50(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "mocov2":
model = models.resnet50(pretrained=False)
model_file = join(data_dir, 'moco_v2_800ep_pretrain.pth.tar')
if not os.path.exists(model_file):
wget.download("https://dl.fbaipublicfiles.com/moco/moco_checkpoints/"
"moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar", model_file)
checkpoint = torch.load(model_file)
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
# remove prefix
state_dict[k[len("module.encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
model = nn.Sequential(*list(model.children())[:-1])
elif model_type == "densenet121":
model = models.densenet121(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
elif model_type == "vgg11":
model = models.vgg11(pretrained=True)
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
else:
raise ValueError("No model: {} found".format(model_type))
model.eval()
model.cuda()
return model
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image2 = torch.clone(image)
for t, m, s in zip(image2, self.mean, self.std):
t.mul_(s).add_(m)
return image2
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
class ToTargetTensor(object):
def __call__(self, target):
return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)
def prep_args():
import sys
old_args = sys.argv
new_args = [old_args.pop(0)]
while len(old_args) > 0:
arg = old_args.pop(0)
if len(arg.split("=")) == 2:
new_args.append(arg)
elif arg.startswith("--"):
new_args.append(arg[2:] + "=" + old_args.pop(0))
else:
raise ValueError("Unexpected arg style {}".format(arg))
sys.argv = new_args
def get_transform(res, is_label, crop_type):
if crop_type == "center":
cropper = T.CenterCrop(res)
elif crop_type == "random":
cropper = T.RandomCrop(res)
elif crop_type is None:
cropper = T.Lambda(lambda x: x)
res = (res, res)
else:
raise ValueError("Unknown Cropper {}".format(crop_type))
if is_label:
return T.Compose([T.Resize(res, Image.NEAREST),
cropper,
ToTargetTensor()])
else:
return T.Compose([T.Resize(res, Image.NEAREST),
cropper,
T.ToTensor(),
normalize])
def _remove_axes(ax):
ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.yaxis.set_major_formatter(plt.NullFormatter())
ax.set_xticks([])
ax.set_yticks([])
def remove_axes(axes):
if len(axes.shape) == 2:
for ax1 in axes:
for ax in ax1:
_remove_axes(ax)
else:
for ax in axes:
_remove_axes(ax)
class UnsupervisedMetrics(Metric):
def __init__(self, prefix: str, n_classes: int, extra_clusters: int, compute_hungarian: bool,
dist_sync_on_step=True):
# call `self.add_state`for every internal state that is needed for the metrics computations
# dist_reduce_fx indicates the function that should be used to reduce
# state from multiple processes
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.n_classes = n_classes
self.extra_clusters = extra_clusters
self.compute_hungarian = compute_hungarian
self.prefix = prefix
self.add_state("stats",
default=torch.zeros(n_classes + self.extra_clusters, n_classes, dtype=torch.int64),
dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
with torch.no_grad():
actual = target.reshape(-1)
preds = preds.reshape(-1)
mask = (actual >= 0) & (actual < self.n_classes) & (preds >= 0) & (preds < self.n_classes)
actual = actual[mask]
preds = preds[mask]
self.stats += torch.bincount(
(self.n_classes + self.extra_clusters) * actual + preds,
minlength=self.n_classes * (self.n_classes + self.extra_clusters)) \
.reshape(self.n_classes, self.n_classes + self.extra_clusters).t().to(self.stats.device)
def map_clusters(self, clusters):
if self.extra_clusters == 0:
return torch.tensor(self.assignments[1])[clusters]
else:
missing = sorted(list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0])))
cluster_to_class = self.assignments[1]
for missing_entry in missing:
if missing_entry == cluster_to_class.shape[0]:
cluster_to_class = np.append(cluster_to_class, -1)
else:
cluster_to_class = np.insert(cluster_to_class, missing_entry + 1, -1)
cluster_to_class = torch.tensor(cluster_to_class)
return cluster_to_class[clusters]
def compute(self):
if self.compute_hungarian:
self.assignments = linear_sum_assignment(self.stats.detach().cpu(), maximize=True)
# print(self.assignments)
if self.extra_clusters == 0:
self.histogram = self.stats[np.argsort(self.assignments[1]), :]
if self.extra_clusters > 0:
self.assignments_t = linear_sum_assignment(self.stats.detach().cpu().t(), maximize=True)
histogram = self.stats[self.assignments_t[1], :]
missing = list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0]))
new_row = self.stats[missing, :].sum(0, keepdim=True)
histogram = torch.cat([histogram, new_row], axis=0)
new_col = torch.zeros(self.n_classes + 1, 1, device=histogram.device)
self.histogram = torch.cat([histogram, new_col], axis=1)
else:
self.assignments = (torch.arange(self.n_classes).unsqueeze(1),
torch.arange(self.n_classes).unsqueeze(1))
self.histogram = self.stats
tp = torch.diag(self.histogram)
fp = torch.sum(self.histogram, dim=0) - tp
fn = torch.sum(self.histogram, dim=1) - tp
iou = tp / (tp + fp + fn)
prc = tp / (tp + fn)
opc = torch.sum(tp) / torch.sum(self.histogram)
metric_dict = {self.prefix + "mIoU": iou[~torch.isnan(iou)].mean().item(),
self.prefix + "Accuracy": opc.item()}
return {k: 100 * v for k, v in metric_dict.items()}
def flexible_collate(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
try:
return torch.stack(batch, 0, out=out)
except RuntimeError:
return batch
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return flexible_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: flexible_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(flexible_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [flexible_collate(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))
|