File size: 6,538 Bytes
d1b31ce
 
 
 
 
 
 
 
 
 
 
c0f6432
c83f8fa
d1b31ce
 
c83f8fa
c0f6432
b404794
c0f6432
d1b31ce
 
 
 
c0f6432
d1b31ce
 
 
8416b80
d1b31ce
 
 
 
8416b80
d1b31ce
 
 
 
 
 
 
 
 
 
 
 
cf60969
2db5685
 
 
 
 
 
d1b31ce
c83f8fa
 
 
 
 
d1b31ce
e761828
 
 
8416b80
c0f6432
 
 
 
 
 
 
 
c83f8fa
 
 
 
 
c0f6432
 
 
c83f8fa
c0f6432
 
c83f8fa
 
 
c0f6432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83f8fa
cf60969
2db5685
 
c83f8fa
 
 
 
 
 
 
c0f6432
 
 
 
 
 
 
cf60969
2db5685
 
c0f6432
c83f8fa
 
 
 
c0f6432
 
 
c83f8fa
 
c0f6432
c83f8fa
 
c0f6432
 
 
 
c83f8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f6432
 
c83f8fa
 
c0f6432
c83f8fa
 
c0f6432
 
 
 
c83f8fa
c0f6432
c83f8fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module contains utility functions for facial expression recognition application.
License: MIT License
"""

import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image

# Importing necessary components for the Gradio app
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import DICT_EMO, config_data
from app.plot import statistics_plot

mp_face_mesh = mp.solutions.face_mesh


def preprocess_image_and_predict(inp):
    inp = np.array(inp)

    if inp is None:
        return None, None, None

    try:
        h, w = inp.shape[:2]
    except Exception:
        return None, None, None

    with mp_face_mesh.FaceMesh(
        max_num_faces=1,
        refine_landmarks=False,
        min_detection_confidence=0.5,
        min_tracking_confidence=0.5,
    ) as face_mesh:
        results = face_mesh.process(inp)
        if results.multi_face_landmarks:
            for fl in results.multi_face_landmarks:
                startX, startY, endX, endY = get_box(fl, w, h)
                cur_face = inp[startY:endY, startX:endX]
                cur_face_n = pth_processing(Image.fromarray(cur_face))
                with torch.no_grad():
                    prediction = (
                        torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
                        .detach()
                        .numpy()[0]
                    )
                confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
                grayscale_cam = cam(input_tensor=cur_face_n)
                grayscale_cam = grayscale_cam[0, :]
                cur_face_hm = cv2.resize(cur_face,(224,224))
                cur_face_hm = np.float32(cur_face_hm) / 255
                heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)

            return cur_face, heatmap, confidences
        
        else:
            return None, None, None

def preprocess_video_and_predict(video):

    cap = cv2.VideoCapture(video)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    path_save_video_face = 'result_face.mp4'
    vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    path_save_video_hm = 'result_hm.mp4'
    vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))

    lstm_features = []
    count_frame = 1
    count_face = 0
    probs = []
    frames = []
    last_output = None
    last_heatmap = None 
    cur_face = None

    with mp_face_mesh.FaceMesh(
    max_num_faces=1,
    refine_landmarks=False,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as face_mesh:

        while cap.isOpened():
            _, frame = cap.read()
            if frame is None: break

            frame_copy = frame.copy()
            frame_copy.flags.writeable = False
            frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_copy)
            frame_copy.flags.writeable = True

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY  = get_box(fl, w, h)
                    cur_face = frame_copy[startY:endY, startX: endX]

                    if count_face%config_data.FRAME_DOWNSAMPLING == 0:
                        cur_face_copy = pth_processing(Image.fromarray(cur_face))
                        with torch.no_grad():
                            features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()

                        grayscale_cam = cam(input_tensor=cur_face_copy)
                        grayscale_cam = grayscale_cam[0, :]
                        cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
                        cur_face_hm = np.float32(cur_face_hm) / 255
                        heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
                        last_heatmap = heatmap
        
                        if len(lstm_features) == 0:
                            lstm_features = [features]*10
                        else:
                            lstm_features = lstm_features[1:] + [features]

                        lstm_f = torch.from_numpy(np.vstack(lstm_features))
                        lstm_f = torch.unsqueeze(lstm_f, 0)
                        with torch.no_grad():
                            output = pth_model_dynamic(lstm_f).detach().numpy()
                        last_output = output

                        if count_face == 0:
                            count_face += 1

                    else:
                        if last_output is not None:
                            output = last_output
                            heatmap = last_heatmap

                        elif last_output is None:
                            output = np.empty((1, 7))
                            output[:] = np.nan
                            
                    probs.append(output[0])
                    frames.append(count_frame)
            else:
                if last_output is not None:
                    lstm_features = []
                    empty = np.empty((7))
                    empty[:] = np.nan
                    probs.append(empty)
                    frames.append(count_frame)                        

            if cur_face is not None:
                heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)

                cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
                cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
                cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
                vid_writer_face.write(cur_face)
                vid_writer_hm.write(heatmap_f)

            count_frame += 1
            if count_face != 0:
                count_face += 1

        vid_writer_face.release()
        vid_writer_hm.release()

        stat = statistics_plot(frames, probs)

        if not stat:
            return None, None, None, None
        
    return video, path_save_video_face, path_save_video_hm, stat