ElenaRyumina's picture
Update app/app_utils.py
8416b80 verified
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module contains utility functions for facial expression recognition application.
License: MIT License
"""
import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
# Importing necessary components for the Gradio app
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import DICT_EMO, config_data
from app.plot import statistics_plot
mp_face_mesh = mp.solutions.face_mesh
def preprocess_image_and_predict(inp):
inp = np.array(inp)
if inp is None:
return None, None, None
try:
h, w = inp.shape[:2]
except Exception:
return None, None, None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
) as face_mesh:
results = face_mesh.process(inp)
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = inp[startY:endY, startX:endX]
cur_face_n = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
prediction = (
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
.detach()
.numpy()[0]
)
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
grayscale_cam = cam(input_tensor=cur_face_n)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224))
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
return cur_face, heatmap, confidences
else:
return None, None, None
def preprocess_video_and_predict(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
path_save_video_hm = 'result_hm.mp4'
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
last_output = None
last_heatmap = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
grayscale_cam = cam(input_tensor=cur_face_copy)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
last_heatmap = heatmap
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
heatmap = last_heatmap
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
if cur_face is not None:
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
vid_writer_hm.release()
stat = statistics_plot(frames, probs)
if not stat:
return None, None, None, None
return video, path_save_video_face, path_save_video_hm, stat