# import gradio as gr | |
# import numpy as np | |
# import torch | |
# from datasets import load_dataset | |
# from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# # load speech translation checkpoint | |
# asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device) | |
# # load text-to-speech checkpoint and speaker embeddings | |
# model_id = "microsoft/speecht5_tts" #"Ellight/speecht5_finetuned_voxpopuli_nl" # update with your model id | |
# # pipe = pipeline("automatic-speech-recognition", model=model_id) | |
# model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation",trust_remote_code=True)) | |
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# # speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
# processor = SpeechT5Processor.from_pretrained(model_id) | |
# replacements = [ | |
# ("à", "a"), | |
# ("ç", "c"), | |
# ("è", "e"), | |
# ("ë", "e"), | |
# ("í", "i"), | |
# ("ï", "i"), | |
# ("ö", "o"), | |
# ("ü", "u"), | |
# ] | |
# def cleanup_text(text): | |
# for src, dst in replacements: | |
# text = text.replace(src, dst) | |
# return text | |
# def synthesize_speech(text): | |
# text = cleanup_text(text) | |
# inputs = processor(text=text, return_tensors="pt") | |
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
# return gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
# def translate(audio): | |
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "Dutch"}) | |
# return outputs["text"] | |
# def synthesise(text): | |
# text = cleanup_text(text) | |
# inputs = processor(text=text, return_tensors="pt") | |
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
# return speech.cpu() | |
# def speech_to_speech_translation(audio): | |
# translated_text = translate(audio) | |
# synthesised_speech = synthesise(translated_text) | |
# synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
# return 16000, synthesised_speech | |
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
from transformers import VitsModel, VitsTokenizer | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# load text-to-speech checkpoint and speaker embeddings | |
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
# model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
model = VitsModel.from_pretrained("Matthijs/mms-tts-nld") | |
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"}) | |
return outputs["text"] | |
def synthesise(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(inputs["input_ids"]) | |
speech = outputs.audio[0] | |
return speech.cpu() | |
# def synthesise(text): | |
# inputs = processor(text=text, return_tensors="pt", padding='max_length', truncation=True) | |
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
# return speech.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_voxpopuli_it](https://huggingface.co/Sandiago21/speecht5_finetuned_voxpopuli_it) checkpoint for text-to-speech, which is based on Microsoft's | |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Dutch Audio dataset: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() |