polyphemus / training.py
EmanueleCosenza's picture
Working version
d896bd4
raw
history blame contribute delete
No virus
19.3 kB
import time
import os
from statistics import mean
from collections import defaultdict
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from tqdm.auto import tqdm
import pprint
import math
import constants
from constants import PitchToken, DurationToken
from utils import append_dict, print_divider
class StepBetaScheduler():
def __init__(self, anneal_start, beta_max, step_size, anneal_end):
self.anneal_start = anneal_start
self.beta_max = beta_max
self.step_size = step_size
self.anneal_end = anneal_end
self.update_steps = 0
self.beta = 0
n_steps = self.beta_max // self.step_size
self.inc_every = (self.anneal_end-self.anneal_start) // n_steps
def step(self):
self.update_steps += 1
if (self.update_steps >= self.anneal_start or
self.update_steps < self.anneal_end):
# If we are annealing, update beta according to current step
curr_step = (self.update_steps-self.anneal_start) // self.inc_every
self.beta = self.step_size * (curr_step+1)
return self.beta
class ExpDecayLRScheduler():
def __init__(self, optimizer, peak_lr, warmup_steps, final_lr_scale,
decay_steps):
self.optimizer = optimizer
self.peak_lr = peak_lr
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
# Find the decay factor needed to reach the specified
# learning rate scale after decay_steps steps
self.decay_factor = -math.log(final_lr_scale) / self.decay_steps
self.update_steps = 0
def set_lr(self, optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def step(self):
self.update_steps += 1
if self.update_steps <= self.warmup_steps:
self.lr = self.peak_lr
else:
# Decay lr exponentially
steps_after_warmup = self.update_steps - self. warmup_steps
self.lr = \
self.peak_lr * math.exp(-self.decay_factor*steps_after_warmup)
self.set_lr(self.optimizer, self.lr)
return self.lr
class PolyphemusTrainer():
def __init__(self, model_dir, model, optimizer, init_lr=1e-4,
lr_scheduler=None, beta_scheduler=None, device=None,
print_every=1, save_every=1, eval_every=100,
iters_to_accumulate=1, **kwargs):
self.__dict__.update(kwargs)
self.model_dir = model_dir
self.model = model
self.optimizer = optimizer
self.init_lr = init_lr
self.lr_scheduler = lr_scheduler
self.beta_scheduler = beta_scheduler
self.device = device if device is not None else torch.device("cpu")
self.cuda = True if self.device.type == 'cuda' else False
self.print_every = print_every
self.save_every = save_every
self.eval_every = eval_every
self.iters_to_accumulate = iters_to_accumulate
# Losses (ignoring PAD tokens)
self.bce_unreduced = nn.BCEWithLogitsLoss(reduction='none')
self.ce_p = nn.CrossEntropyLoss(ignore_index=PitchToken.PAD.value)
self.ce_d = nn.CrossEntropyLoss(ignore_index=DurationToken.PAD.value)
# Training stats
self.tr_losses = defaultdict(list)
self.tr_accuracies = defaultdict(list)
self.val_losses = defaultdict(list)
self.val_accuracies = defaultdict(list)
self.lrs = []
self.betas = []
self.times = []
def train(self, trainloader, validloader=None, epochs=100, early_exit=None):
self.tot_batches = 0
self.beta = 0
self.min_val_loss = np.inf
start = time.time()
self.times.append(start)
self.model.train()
scaler = torch.cuda.amp.GradScaler() if self.cuda else None
self.optimizer.zero_grad()
progress_bar = tqdm(range(len(trainloader)))
for epoch in range(epochs):
self.cur_epoch = epoch
for batch_idx, graph in enumerate(trainloader):
self.cur_batch_idx = batch_idx
# Move batch of graphs to device. Note: a single graph here
# represents a bar in the original sequence.
graph = graph.to(self.device)
s_tensor, c_tensor = graph.s_tensor, graph.c_tensor
with torch.cuda.amp.autocast(enabled=self.cuda):
# Forward pass to obtain mu, log(sigma^2), computed by the
# encoder, and structure and content logits, computed by the
# decoder
(s_logits, c_logits), mu, log_var = self.model(graph)
# Compute losses
tot_loss, losses = self._losses(
s_tensor, s_logits,
c_tensor, c_logits,
mu, log_var
)
tot_loss = tot_loss / self.iters_to_accumulate
# Backpropagation
if self.cuda:
scaler.scale(tot_loss).backward()
else:
tot_loss.backward()
# Update weights with accumulated gradients
if (self.tot_batches + 1) % self.iters_to_accumulate == 0:
if self.cuda:
scaler.step(self.optimizer)
scaler.update()
else:
self.optimizer.step()
self.optimizer.zero_grad()
# Update lr and beta
if self.lr_scheduler is not None:
self.lr_scheduler.step()
if self.beta_scheduler is not None:
self.beta_scheduler.step()
# Compute accuracies
accs = self._accuracies(
s_tensor, s_logits,
c_tensor, c_logits,
graph.is_drum
)
# Update the stats
append_dict(self.tr_losses, losses)
append_dict(self.tr_accuracies, accs)
last_lr = (self.lr_scheduler.lr
if self.lr_scheduler is not None else self.init_lr)
self.lrs.append(last_lr)
self.betas.append(self.beta)
now = time.time()
self.times.append(now)
# Print stats
if (self.tot_batches + 1) % self.print_every == 0:
print("Training on batch {}/{} of epoch {}/{} complete."
.format(batch_idx+1,
len(trainloader),
epoch+1,
epochs))
self._print_stats()
print_divider()
# Eval on VL every `eval_every` gradient updates
if (validloader is not None and
(self.tot_batches + 1) % self.eval_every == 0):
# Evaluate on VL
print("\nEvaluating on validation set...\n")
val_losses, val_accuracies = self.evaluate(validloader)
# Update stats
append_dict(self.val_losses, val_losses)
append_dict(self.val_accuracies, val_accuracies)
print("Val losses:")
print(val_losses)
print("Val accuracies:")
print(val_accuracies)
# Save model if VL loss (tot) reached a new minimum
tot_loss = val_losses['tot']
if tot_loss < self.min_val_loss:
print("\nValidation loss improved.")
print("Saving new best model to disk...\n")
self._save_model('best_model')
self.min_val_loss = tot_loss
self.model.train()
progress_bar.update(1)
# Save model and stats on disk
if (self.save_every > 0 and
(self.tot_batches + 1) % self.save_every == 0):
self._save_model('checkpoint')
# Stop prematurely if early_exit is set and reached
if (early_exit is not None and
(self.tot_batches + 1) > early_exit):
break
self.tot_batches += 1
end = time.time()
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print("Training completed in (h:m:s): {:0>2}:{:0>2}:{:05.2f}"
.format(int(hours), int(minutes), seconds))
self._save_model('checkpoint')
def evaluate(self, loader):
losses = defaultdict(list)
accs = defaultdict(list)
self.model.eval()
progress_bar = tqdm(range(len(loader)))
with torch.no_grad():
for _, graph in enumerate(loader):
# Get the inputs and move them to device
graph = graph.to(self.device)
s_tensor, c_tensor = graph.s_tensor, graph.c_tensor
with torch.cuda.amp.autocast():
# Forward pass, get the reconstructions
(s_logits, c_logits), mu, log_var = self.model(graph)
_, losses_b = self._losses(
s_tensor, s_logits,
c_tensor, c_logits,
mu, log_var
)
accs_b = self._accuracies(
s_tensor, s_logits,
c_tensor, c_logits,
graph.is_drum
)
# Save losses and accuracies
append_dict(losses, losses_b)
append_dict(accs, accs_b)
progress_bar.update(1)
# Compute avg losses and accuracies
avg_losses = {}
for k, l in losses.items():
avg_losses[k] = mean(l)
avg_accs = {}
for k, l in accs.items():
avg_accs[k] = mean(l)
return avg_losses, avg_accs
def _losses(self, s_tensor, s_logits, c_tensor, c_logits, mu, log_var):
# Do not consider SOS token
c_tensor = c_tensor[..., 1:, :]
c_logits = c_logits.reshape(-1, c_logits.size(-1))
c_tensor = c_tensor.reshape(-1, c_tensor.size(-1))
# Reshape logits to match s_tensor dimensions:
# n_graphs (in batch) x n_tracks x n_timesteps
s_logits = s_tensor.reshape(-1, *s_logits.shape[2:])
# Binary structure tensor loss (binary cross entropy)
s_loss = self.bce_unreduced(
s_logits.view(-1), s_tensor.view(-1).float())
s_loss = torch.mean(s_loss)
# Content tensor loss (pitches)
# argmax is used to obtain token ids from onehot rep
pitch_logits = c_logits[:, :constants.N_PITCH_TOKENS]
pitch_true = c_tensor[:, :constants.N_PITCH_TOKENS].argmax(dim=1)
pitch_loss = self.ce_p(pitch_logits, pitch_true)
# Content tensor loss (durations)
dur_logits = c_logits[:, constants.N_PITCH_TOKENS:]
dur_true = c_tensor[:, constants.N_PITCH_TOKENS:].argmax(dim=1)
dur_loss = self.ce_d(dur_logits, dur_true)
# Kullback-Leibler divergence loss
# Derivation in Kingma, Diederik P., and Max Welling. "Auto-encoding
# variational bayes." (2013), Appendix B.
# (https://arxiv.org/pdf/1312.6114.pdf)
kld_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp(),
dim=1)
kld_loss = torch.mean(kld_loss)
# Reconstruction loss and total loss
rec_loss = pitch_loss + dur_loss + s_loss
tot_loss = rec_loss + self.beta*kld_loss
losses = {
'tot': tot_loss.item(),
'pitch': pitch_loss.item(),
'dur': dur_loss.item(),
'structure': s_loss.item(),
'reconstruction': rec_loss.item(),
'kld': kld_loss.item(),
'beta*kld': self.beta*kld_loss.item()
}
return tot_loss, losses
def _accuracies(self, s_tensor, s_logits, c_tensor, c_logits, is_drum):
# Do not consider SOS token
c_tensor = c_tensor[..., 1:, :]
# Reshape logits to match s_tensor dimensions:
# n_graphs (in batch) x n_tracks x n_timesteps
s_logits = s_tensor.reshape(-1, *s_logits.shape[2:])
# Note accuracy considers both pitches and durations
note_acc = self._note_accuracy(c_logits, c_tensor)
pitch_acc = self._pitch_accuracy(c_logits, c_tensor)
# Compute pitch accuracies for drums and non drums separately
pitch_acc_drums = self._pitch_accuracy(
c_logits, c_tensor, drums=True, is_drum=is_drum
)
pitch_acc_non_drums = self._pitch_accuracy(
c_logits, c_tensor, drums=False, is_drum=is_drum
)
dur_acc = self._duration_accuracy(c_logits, c_tensor)
s_acc = self._structure_accuracy(s_logits, s_tensor)
s_precision = self._structure_precision(s_logits, s_tensor)
s_recall = self._structure_recall(s_logits, s_tensor)
s_f1 = (2*s_recall*s_precision / (s_recall+s_precision))
accs = {
'note': note_acc.item(),
'pitch': pitch_acc.item(),
'pitch_drums': pitch_acc_drums.item(),
'pitch_non_drums': pitch_acc_non_drums.item(),
'dur': dur_acc.item(),
's_acc': s_acc.item(),
's_precision': s_precision.item(),
's_recall': s_recall.item(),
's_f1': s_f1.item()
}
return accs
def _pitch_accuracy(self, c_logits, c_tensor, drums=None, is_drum=None):
# When drums is None, just compute the global pitch accuracy without
# distinguishing between drum and non drum pitches
if drums is not None:
if drums:
c_logits = c_logits[is_drum]
c_tensor = c_tensor[is_drum]
else:
c_logits = c_logits[torch.logical_not(is_drum)]
c_tensor = c_tensor[torch.logical_not(is_drum)]
# Apply softmax to obtain pitch reconstructions
pitch_rec = c_logits[..., :constants.N_PITCH_TOKENS]
pitch_rec = F.softmax(pitch_rec, dim=-1)
pitch_rec = torch.argmax(pitch_rec, dim=-1)
pitch_true = c_tensor[..., :constants.N_PITCH_TOKENS]
pitch_true = torch.argmax(pitch_true, dim=-1)
# Do not consider PAD tokens when computing accuracies
not_pad = (pitch_true != PitchToken.PAD.value)
correct = (pitch_rec == pitch_true)
correct = torch.logical_and(correct, not_pad)
return torch.sum(correct) / torch.sum(not_pad)
def _duration_accuracy(self, c_logits, c_tensor):
# Apply softmax to obtain reconstructed durations
dur_rec = c_logits[..., constants.N_PITCH_TOKENS:]
dur_rec = F.softmax(dur_rec, dim=-1)
dur_rec = torch.argmax(dur_rec, dim=-1)
dur_true = c_tensor[..., constants.N_PITCH_TOKENS:]
dur_true = torch.argmax(dur_true, dim=-1)
# Do not consider PAD tokens when computing accuracies
not_pad = (dur_true != DurationToken.PAD.value)
correct = (dur_rec == dur_true)
correct = torch.logical_and(correct, not_pad)
return torch.sum(correct) / torch.sum(not_pad)
def _note_accuracy(self, c_logits, c_tensor):
# Apply softmax to obtain pitch reconstructions
pitch_rec = c_logits[..., :constants.N_PITCH_TOKENS]
pitch_rec = F.softmax(pitch_rec, dim=-1)
pitch_rec = torch.argmax(pitch_rec, dim=-1)
pitch_true = c_tensor[..., :constants.N_PITCH_TOKENS]
pitch_true = torch.argmax(pitch_true, dim=-1)
not_pad_p = (pitch_true != PitchToken.PAD.value)
correct_p = (pitch_rec == pitch_true)
correct_p = torch.logical_and(correct_p, not_pad_p)
dur_rec = c_logits[..., constants.N_PITCH_TOKENS:]
dur_rec = F.softmax(dur_rec, dim=-1)
dur_rec = torch.argmax(dur_rec, dim=-1)
dur_true = c_tensor[..., constants.N_PITCH_TOKENS:]
dur_true = torch.argmax(dur_true, dim=-1)
not_pad_d = (dur_true != DurationToken.PAD.value)
correct_d = (dur_rec == dur_true)
correct_d = torch.logical_and(correct_d, not_pad_d)
note_accuracy = torch.sum(
torch.logical_and(correct_p, correct_d)) / torch.sum(not_pad_p)
return note_accuracy
def _structure_accuracy(self, s_logits, s_tensor):
s_logits = torch.sigmoid(s_logits)
s_logits[s_logits < 0.5] = 0
s_logits[s_logits >= 0.5] = 1
return torch.sum(s_logits == s_tensor) / s_tensor.numel()
def _structure_precision(self, s_logits, s_tensor):
s_logits = torch.sigmoid(s_logits)
s_logits[s_logits < 0.5] = 0
s_logits[s_logits >= 0.5] = 1
tp = torch.sum(s_tensor[s_logits == 1])
return tp / torch.sum(s_logits)
def _structure_recall(self, s_logits, s_tensor):
s_logits = torch.sigmoid(s_logits)
s_logits[s_logits < 0.5] = 0
s_logits[s_logits >= 0.5] = 1
tp = torch.sum(s_tensor[s_logits == 1])
return tp / torch.sum(s_tensor)
def _save_model(self, filename):
path = os.path.join(self.model_dir, filename)
print("Saving model to disk...")
torch.save({
'epoch': self.cur_epoch,
'batch': self.cur_batch_idx,
'tot_batches': self.tot_batches,
'betas': self.betas,
'min_val_loss': self.min_val_loss,
'print_every': self.print_every,
'save_every': self.save_every,
'eval_every': self.eval_every,
'lrs': self.lrs,
'tr_losses': self.tr_losses,
'tr_accuracies': self.tr_accuracies,
'val_losses': self.val_losses,
'val_accuracies': self.val_accuracies,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()
}, path)
print("The model has been successfully saved.")
def _print_stats(self):
hours, rem = divmod(self.times[-1]-self.times[0], 3600)
minutes, seconds = divmod(rem, 60)
print("Elapsed time from start (h:m:s): {:0>2}:{:0>2}:{:05.2f}"
.format(int(hours), int(minutes), seconds))
# Take mean of the last non-printed batches for each loss and accuracy
avg_losses = {}
for k, l in self.tr_losses.items():
v = mean(l[-self.print_every:])
avg_losses[k] = round(v, 2)
avg_accs = {}
for k, l in self.tr_accuracies.items():
v = mean(l[-self.print_every:])
avg_accs[k] = round(v, 2)
print("Losses:")
pprint.pprint(avg_losses, indent=2)
print("Accuracies:")
pprint.pprint(avg_accs, indent=2)