Spaces:
Runtime error
Runtime error
# Author: Bastien | |
# Date: 2/25/2024 | |
# Project: SAE-GPT2 | BUT 3 Informatique - Semester 5 | |
# Import of required libraries | |
import os | |
os.system("pip install --upgrade pip") | |
os.system("pip install googletrans-py") | |
os.system("pip install tensorflow==2.15.0") | |
os.system("pip install keras-nlp") | |
os.system("pip install -q --upgrade keras") # Upgrade Keras to version 3 | |
import time | |
import keras | |
import keras_nlp | |
import pandas as pd | |
import gradio as gr | |
from googletrans import Translator | |
# Set Keras Backend to Tensorflow | |
os.environ["KERAS_BACKEND"] = "tensorflow" | |
# Load the fine-tuned model | |
model = keras.models.load_model("LoRA_Model_V2.keras") | |
translator = Translator() # Create Translator Instance | |
# Function to generate responses from the model | |
def generate_responses(question): | |
language = translator.detect(question).lang.upper() # Verify the language of the prompt | |
if language != "EN": | |
question = translator.translate(question, src=language, dest="en").text # Translation of user text to english for the model | |
prompt = f"Patient: \"{question}\"\nDoctor:" | |
# Generate the answer from the model and then clean and extract the real model's response from the prompt engineered string | |
output = clean_answer_text(model.generate(prompt, max_length=1024)) | |
if language != "EN": | |
output = Translator().translate(output, src="en", dest=language).text # Translation of model's text to user's language | |
return output | |
# Function clean the output of the model from the prompt engineering done in the "generate_responses" function | |
def clean_answer_text(text: str) -> str: | |
# Define the start marker for the model's response | |
doctor_response_start = text.find("Doctor:") + len("Doctor:") | |
# Extract everything after "Doctor:" | |
response_text = text[doctor_response_start:].strip() | |
# If there's a follow-up "Patient:" in the response, cut the response there | |
follow_up_index = response_text.find("\nPatient:") | |
if follow_up_index != -1: | |
response_text = response_text[:follow_up_index] | |
# If there's no follow-up "Patient:", cut the response to the last dot (.) | |
else: | |
last_dot_index = response_text.rfind(".") | |
if last_dot_index != -1: | |
response_text = response_text[:last_dot_index + 1] | |
# Additional cleaning if necessary (e.g., removing leading/trailing spaces or new lines) | |
response_text = response_text.strip() | |
response_text = response_text.replace("Doctor: ","") | |
return response_text | |
# Initialize an empty DataFrame to keep track of question-answer history | |
history_df = pd.DataFrame(columns=["Question", "Réponse"]) | |
# Define a Gradio interface | |
def chat_interface(question): | |
global history_df | |
response = generate_responses(question) | |
# Insert the new question and response at the beginning of the DataFrame | |
history_df = pd.concat([pd.DataFrame({"Question": [question], "Réponse": [response]}), history_df], ignore_index=True) | |
return response, history_df | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<div style='width: 100%; height: 200px; background: url("https://github.com/BastienHot/SAE-GPT2/raw/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png") no-repeat center center; background-size: contain;'> | |
<h1 style='text-align:center; width=100%'>DracolIA - AI Question Answering for Healthcare</h1> | |
</div> | |
""") | |
with gr.Row(): | |
question = gr.Textbox(label="Votre Question", placeholder="Saisissez ici...") | |
submit_btn = gr.Button("Envoyer") | |
response = gr.Textbox(label="Réponse", interactive=False) | |
history_display = gr.Dataframe(headers=["Question", "Réponse"], values=[]) | |
submit_btn.click(fn=chat_interface, inputs=question, outputs=[response, history_display]) | |
if __name__ == "__main__": | |
demo.launch() | |