Create pre-requirements.txt

#1
by PascalZhan - opened
Files changed (6) hide show
  1. .gitignore +0 -1
  2. app.py +4 -85
  3. gradio.py +100 -0
  4. importHuggingFaceHubModel.py +0 -164
  5. pre-requirements.txt +1 -0
  6. requirements.txt +3 -1
.gitignore DELETED
@@ -1 +0,0 @@
1
- *.keras
 
 
app.py CHANGED
@@ -1,88 +1,7 @@
1
- # Author: Bastien & Pascal
2
- # Date: 2/25/2024
3
- # Project: SAE-GPT2 | BUT 3 Informatique - Semester 5
4
-
5
- # Import of required libraries
6
- import os
7
-
8
- os.system("pip install --upgrade pip")
9
- os.system("pip install googletrans-py")
10
- os.system("pip install tensorflow==2.15.0")
11
- os.system("pip install keras-nlp")
12
- os.system("pip install -q --upgrade keras") # Upgrade Keras to version 3
13
-
14
- import time
15
- import keras
16
- import keras_nlp
17
- import pandas as pd
18
  import gradio as gr
19
- from googletrans import Translator
20
- from importHuggingFaceHubModel import from_pretrained_keras
21
-
22
- # Set Keras Backend to Tensorflow
23
- os.environ["KERAS_BACKEND"] = "tensorflow"
24
-
25
- # Load the fine-tuned model
26
- #model = keras.models.load_model("LoRA_Model_V2.keras")
27
- model = from_pretrained_keras('DracolIA/GPT-2-LoRA-HealthCare')
28
-
29
- translator = Translator() # Create Translator Instance
30
-
31
- # Function to generate responses from the model
32
- def generate_responses(question):
33
- language = translator.detect(question).lang.upper() # Verify the language of the prompt
34
- if language != "EN":
35
- question = translator.translate(question, src=language, dest="en").text # Translation of user text to english for the model
36
-
37
- prompt = f"[QUESTION] {question} [ANSWER]"
38
- # Generate the answer from the model and then clean and extract the real model's response from the prompt engineered string
39
- output = clean_answer_text(model.generate(prompt, max_length=1024))
40
-
41
- # Generate the answer from the model and then clean and extract the real model's response from the prompt engineered string
42
- if language != "EN":
43
- output = Translator().translate(output, src="en", dest=language).text # Translation of model's text to user's language
44
-
45
- return output
46
-
47
- # Function clean the output of the model from the prompt engineering done in the "generate_responses" function
48
- def clean_answer_text(text: str) -> str:
49
- # Define the start marker for the model's response
50
- response_start = text.find("[ANSWER]") + len("[ANSWER]")
51
-
52
- # Extract everything after "Doctor:"
53
- response_text = text[response_start:].strip()
54
- last_dot_index = response_text.rfind(".")
55
- if last_dot_index != -1:
56
- response_text = response_text[:last_dot_index + 1]
57
-
58
- # Additional cleaning if necessary (e.g., removing leading/trailing spaces or new lines)
59
- response_text = response_text.strip()
60
-
61
- return response_text
62
-
63
-
64
- # Define a Gradio interface
65
- def chat_interface(question, history_df):
66
- response = generate_responses(question)
67
- # Insert the new question and response at the beginning of the DataFrame
68
- history_df = pd.concat([pd.DataFrame({"Question": [question], "Réponse": [response]}), history_df], ignore_index=True)
69
- return response, history_df
70
-
71
- with gr.Blocks() as demo:
72
- gr.HTML("""
73
- <div style='width: 100%; height: 200px; background: url("https://github.com/BastienHot/SAE-GPT2/raw/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png") no-repeat center center; background-size: contain;'>
74
- <h1 style='text-align:center; width=100%'>DracolIA - AI Question Answering for Healthcare</h1>
75
- </div>
76
- """)
77
- with gr.Row():
78
- question = gr.Textbox(label="Votre Question", placeholder="Saisissez ici...")
79
- submit_btn = gr.Button("Envoyer")
80
- response = gr.Textbox(label="Réponse", interactive=False)
81
-
82
- # Initialize an empty DataFrame to keep track of question-answer history
83
- history_display = gr.Dataframe(headers=["Question", "Réponse"], values=[], interactive=False)
84
 
85
- submit_btn.click(fn=chat_interface, inputs=[question, history_display], outputs=[response, history_display])
 
86
 
87
- if __name__ == "__main__":
88
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
 
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()
gradio.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled3.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1zwLQmMKCQKLMkJ_5Un4C6V4ajs4LYUOR
8
+ """
9
+ """
10
+ !pip install --upgrade typing-extensions -q
11
+ !pip install -q gradio --upgrade -q
12
+ !pip install keras_nlp -q
13
+ """
14
+ from google.colab import drive
15
+ drive.mount('/content/drive')
16
+
17
+ import os
18
+ from tensorflow import keras
19
+ import keras_nlp
20
+ import gradio as gr
21
+ import random
22
+ import time
23
+
24
+ os.environ["KERAS_BACKEND"] = "tensorflow" # or "tensorflow" or "torch"
25
+ keras.mixed_precision.set_global_policy("mixed_float16")
26
+
27
+ preprocessor = keras_nlp.models.GPT2CausalLMPreprocessor.from_preset(
28
+ "gpt2_large_en",
29
+ sequence_length=256,
30
+ )
31
+ gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset(
32
+ "gpt2_large_en", preprocessor=preprocessor
33
+ )
34
+
35
+ gpt2_lm.load_weights('./drive/MyDrive/checkpoints/my_checkpoint')
36
+
37
+ css = """
38
+ .gradio-container {
39
+ background-color: transparent;
40
+ color: #f5f5dc;
41
+ border-color: #d5aa5e;
42
+ }
43
+ /* Styling for the chatbot */
44
+ .chat{
45
+ border-color: #d5aa5e;
46
+ background-color:#22201f;
47
+ background-image: url('https://github.com/BastienHot/SAE-GPT2/blob/70fb88500a2cc168d71e8ed635fc54492beb6241/image/logo.png');
48
+ background-size: cover;
49
+ background-position: center;
50
+ }
51
+
52
+ /* Styling for the user */
53
+ .user{
54
+ background-color: #957d52;
55
+ }
56
+
57
+ /* Styling for the text inside the chatbot */
58
+ .gradio-chatbox .message-container .message-right {
59
+ color: #f5f5dc; /* Antique white text color */
60
+ border-color: #d5aa5e;
61
+ background-color: red;
62
+ }
63
+
64
+ .md svelte-1syupzx chatbot{
65
+ border-color: #d5aa5e;
66
+ background-color: #3e3836;
67
+ }
68
+
69
+ .message user svelte-1lcyrx4 message-bubble-border {
70
+ border-color: #3e3836;
71
+ }
72
+
73
+
74
+ """
75
+
76
+ def predict(text):
77
+ # Simulating model prediction
78
+ return gpt2_lm.generate(text)
79
+
80
+ with gr.Blocks(css=css) as demo:
81
+ chatbot = gr.Chatbot(elem_classes="chat")
82
+ msg = gr.Textbox(elem_classes="user")
83
+ clear = gr.ClearButton([msg, chatbot])
84
+
85
+ def respond(message, chat_history):
86
+ bot_message = predict(message)
87
+ # Ajouter une classe pour la partie bot_message
88
+ bot_message_html = f'<div class="bot-message">{bot_message}</div>'
89
+ # Ajouter une classe pour la partie message
90
+ user_message_html = f'<div class="user-message">{message}</div>'
91
+ chat_history.append((user_message_html, bot_message_html))
92
+ time.sleep(2)
93
+ return "", chat_history
94
+
95
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
96
+
97
+
98
+ if __name__ == "__main__":
99
+ demo.launch(debug=True, share=True)
100
+
importHuggingFaceHubModel.py DELETED
@@ -1,164 +0,0 @@
1
- # Author : ZHAN Pascal
2
- # Date 09/03/2025
3
- # Project: SAE-GPT2 | BUT 3 Informatique - Semester 5
4
-
5
- """
6
- https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/keras_mixin.py#L397
7
- It seems the function 'from_pretrained_keras' from Hugging Face's 'huggingface_hub' is not working.
8
- Let's rewrite the code to fix it locally.
9
-
10
- To load the model, it's using 'tf.keras.models.load_model', but it's providing a folder instead of the path to the model file
11
- So, we'll search for the first file with the .keras extension in the folder. If None is found then it will raise an error.
12
- """
13
-
14
- from huggingface_hub import ModelHubMixin, snapshot_download
15
- import os
16
- from huggingface_hub.utils import (
17
- get_tf_version,
18
- is_tf_available,
19
- )
20
-
21
- def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin":
22
- r"""
23
- Instantiate a pretrained Keras model from a pre-trained model from the Hub.
24
- The model is expected to be in `SavedModel` format.
25
- Args:
26
- pretrained_model_name_or_path (`str` or `os.PathLike`):
27
- Can be either:
28
- - A string, the `model id` of a pretrained model hosted inside a
29
- model repo on huggingface.co. Valid model ids can be located
30
- at the root-level, like `bert-base-uncased`, or namespaced
31
- under a user or organization name, like
32
- `dbmdz/bert-base-german-cased`.
33
- - You can add `revision` by appending `@` at the end of model_id
34
- simply like this: `dbmdz/bert-base-german-cased@main` Revision
35
- is the specific model version to use. It can be a branch name,
36
- a tag name, or a commit id, since we use a git-based system
37
- for storing models and other artifacts on huggingface.co, so
38
- `revision` can be any identifier allowed by git.
39
- - A path to a `directory` containing model weights saved using
40
- [`~transformers.PreTrainedModel.save_pretrained`], e.g.,
41
- `./my_model_directory/`.
42
- - `None` if you are both providing the configuration and state
43
- dictionary (resp. with keyword arguments `config` and
44
- `state_dict`).
45
- force_download (`bool`, *optional*, defaults to `False`):
46
- Whether to force the (re-)download of the model weights and
47
- configuration files, overriding the cached versions if they exist.
48
- resume_download (`bool`, *optional*, defaults to `False`):
49
- Whether to delete incompletely received files. Will attempt to
50
- resume the download if such a file exists.
51
- proxies (`Dict[str, str]`, *optional*):
52
- A dictionary of proxy servers to use by protocol or endpoint, e.g.,
53
- `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
54
- proxies are used on each request.
55
- token (`str` or `bool`, *optional*):
56
- The token to use as HTTP bearer authorization for remote files. If
57
- `True`, will use the token generated when running `transformers-cli
58
- login` (stored in `~/.huggingface`).
59
- cache_dir (`Union[str, os.PathLike]`, *optional*):
60
- Path to a directory in which a downloaded pretrained model
61
- configuration should be cached if the standard cache should not be
62
- used.
63
- local_files_only(`bool`, *optional*, defaults to `False`):
64
- Whether to only look at local files (i.e., do not try to download
65
- the model).
66
- model_kwargs (`Dict`, *optional*):
67
- model_kwargs will be passed to the model during initialization
68
- <Tip>
69
- Passing `token=True` is required when you want to use a private
70
- model.
71
- </Tip>
72
- """
73
- return KerasModelHubMixin.from_pretrained(*args, **kwargs)
74
-
75
-
76
- class KerasModelHubMixin(ModelHubMixin):
77
- """
78
- Implementation of [`ModelHubMixin`] to provide model Hub upload/download
79
- capabilities to Keras models.
80
- ```python
81
- >>> import tensorflow as tf
82
- >>> from huggingface_hub import KerasModelHubMixin
83
- >>> class MyModel(tf.keras.Model, KerasModelHubMixin):
84
- ... def __init__(self, **kwargs):
85
- ... super().__init__()
86
- ... self.config = kwargs.pop("config", None)
87
- ... self.dummy_inputs = ...
88
- ... self.layer = ...
89
- ... def call(self, *args):
90
- ... return ...
91
- >>> # Initialize and compile the model as you normally would
92
- >>> model = MyModel()
93
- >>> model.compile(...)
94
- >>> # Build the graph by training it or passing dummy inputs
95
- >>> _ = model(model.dummy_inputs)
96
- >>> # Save model weights to local directory
97
- >>> model.save_pretrained("my-awesome-model")
98
- >>> # Push model weights to the Hub
99
- >>> model.push_to_hub("my-awesome-model")
100
- >>> # Download and initialize weights from the Hub
101
- >>> model = MyModel.from_pretrained("username/super-cool-model")
102
- ```
103
- """
104
-
105
- @classmethod
106
- def _from_pretrained(
107
- cls,
108
- model_id,
109
- revision,
110
- cache_dir,
111
- force_download,
112
- proxies,
113
- resume_download,
114
- local_files_only,
115
- token,
116
- **model_kwargs,
117
- ):
118
- """Here we just call [`from_pretrained_keras`] function so both the mixin and
119
- functional APIs stay in sync.
120
- TODO - Some args above aren't used since we are calling
121
- snapshot_download instead of hf_hub_download.
122
- """
123
- if is_tf_available():
124
- import tensorflow as tf
125
- else:
126
- raise ImportError("Called a TensorFlow-specific function but could not import it.")
127
-
128
- # TODO - Figure out what to do about these config values. Config is not going to be needed to load model
129
- cfg = model_kwargs.pop("config", None)
130
-
131
- # Root is either a local filepath matching model_id or a cached snapshot
132
- if not os.path.isdir(model_id):
133
- storage_folder = snapshot_download(
134
- repo_id=model_id,
135
- revision=revision,
136
- cache_dir=cache_dir,
137
- library_name="keras",
138
- library_version=get_tf_version(),
139
- )
140
- else:
141
- storage_folder = model_id
142
-
143
- files = os.listdir(storage_folder)
144
- modelFileName = None
145
- nbModel = 0
146
- for file in files :
147
- if file.endswith(".keras"):
148
- modelFileName = file
149
- nbModel +=1
150
-
151
- if modelFileName==None:
152
- raise ValueError("Repository does not have model that ends with .keras!!!")
153
-
154
- if nbModel > 1:
155
- raise ValueError("Too many models!!!")
156
-
157
- modelPath = storage_folder + '/' + modelFileName
158
-
159
- model = tf.keras.models.load_model(modelPath, **model_kwargs)
160
-
161
- # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir.
162
- model.config = cfg
163
-
164
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pre-requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pip==24.0
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- gradio
 
 
 
1
+ gradio
2
+ keras_nlp
3
+ typing-extensions