File size: 1,416 Bytes
7ac295d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#Falah with Gradio
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageDraw

checkpoint = "google/owlvit-base-patch32"
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")

def detect_and_visualize_objects(image):
    # Convert the image to RGB format
    image = image.convert("RGB")

    # Process the image using the object detection model
    predictions = detector(
        image,
        candidate_labels=["human face", "rocket", "nasa badge", "star-spangled banner"],
    )

    # Draw bounding boxes and labels on the image
    draw = ImageDraw.Draw(image)
    for prediction in predictions:
        box = prediction["box"]
        label = prediction["label"]
        score = prediction["score"]

        xmin, ymin, xmax, ymax = box.values()
        draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1)
        draw.text((xmin, ymin), f"{label}: {round(score, 2)}", fill="white")

    # Return the annotated image
    return image

# Define the Gradio interface
image_input = gr.inputs.Image(type="pil")
image_output = gr.outputs.Image(type="pil")

iface = gr.Interface(
    fn=detect_and_visualize_objects,
    inputs=image_input,
    outputs=image_output,
    title="Object Detection",
    description="Detect objects in an image using a pre-trained model and visualize the results.",
)

# Launch the Gradio interface
iface.launch(debug=True)