Spaces:
Running
Running
File size: 13,408 Bytes
7d31abf f13c41f fd4d632 838294b f13c41f fd4d632 f13c41f 2779600 4e46091 e856b6e f13c41f 838294b f13c41f e856b6e f13c41f e856b6e f13c41f 25c2784 2779600 838294b 2779600 fd4d632 25c2784 2779600 fd4d632 2779600 f13c41f 2779600 25c2784 fd4d632 25c2784 f13c41f 2779600 25c2784 c95cc1d 25c2784 f13c41f e856b6e f13c41f 25c2784 ae48414 4e46091 ae48414 e856b6e ae48414 fd4d632 c95cc1d f13c41f 4e46091 2087ed7 ae48414 4e46091 2087ed7 e856b6e ae48414 fd4d632 ae48414 2087ed7 f13c41f 2087ed7 4e46091 2087ed7 ae48414 2087ed7 4e46091 2087ed7 e856b6e ae48414 fd4d632 ae48414 2087ed7 f13c41f 4e46091 820691f ae48414 4e46091 820691f 4e46091 820691f e856b6e ae48414 fd4d632 ae48414 820691f f13c41f 4e46091 25c2784 ae48414 4e46091 820691f 4e46091 ae48414 e856b6e ae48414 fd4d632 ae48414 25c2784 f13c41f 4e46091 2087ed7 ae48414 4e46091 2087ed7 e856b6e ae48414 fd4d632 ae48414 2087ed7 f13c41f 4e46091 25c2784 ae48414 4e46091 820691f 4e46091 ae48414 e856b6e ae48414 fd4d632 ae48414 25c2784 f13c41f 4e46091 25c2784 ae48414 4e46091 ae48414 e856b6e ae48414 fd4d632 ae48414 25c2784 f13c41f 25c2784 ae48414 4e46091 ae48414 e856b6e ae48414 fd4d632 ae48414 25c2784 f13c41f ae48414 4e46091 ae48414 e856b6e ae48414 f13c41f ae48414 f13c41f ae48414 c95cc1d 94f61cc c95cc1d 4b20876 838294b c95cc1d 838294b ae48414 2087ed7 820691f f13c41f 838294b f13c41f 838294b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import redis
import pickle
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from transformers import pipeline as transformers_pipeline, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from audiocraft.models import musicgen
import gradio as gr
from huggingface_hub import snapshot_download, HfApi, HfFolder
import multiprocessing
import io
import time
from tqdm import tqdm
from google.cloud import storage
import json
hf_token = os.getenv("HF_TOKEN")
redis_host = os.getenv("REDIS_HOST")
redis_port = int(os.getenv("REDIS_PORT", 6379))
redis_password = os.getenv("REDIS_PASSWORD")
gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS"))
gcs_bucket_name = os.getenv("GCS_BUCKET_NAME")
HfFolder.save_token(hf_token)
storage_client = storage.Client.from_service_account_info(gcs_credentials)
def connect_to_redis():
while True:
try:
redis_client = redis.Redis(host=redis_host, port=redis_port, password=redis_password)
redis_client.ping()
return redis_client
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError) as e:
print(f"Connection to Redis failed: {e}. Retrying in 1 second...")
time.sleep(1)
def reconnect_if_needed(redis_client):
try:
redis_client.ping()
except (redis.exceptions.ConnectionError, redis.exceptions.TimeoutError, BrokenPipeError):
print("Reconnecting to Redis...")
return connect_to_redis()
return redis_client
def load_object_from_redis(key):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
obj_data = redis_client.get(key)
return pickle.loads(obj_data) if obj_data else None
except (pickle.PickleError, redis.exceptions.RedisError) as e:
print(f"Failed to load object from Redis: {e}")
return None
def save_object_to_redis(key, obj):
redis_client = connect_to_redis()
redis_client = reconnect_if_needed(redis_client)
try:
redis_client.set(key, pickle.dumps(obj))
except redis.exceptions.RedisError as e:
print(f"Failed to save object to Redis: {e}")
def upload_to_gcs(bucket_name, blob_name, data):
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
blob.upload_from_string(data)
def download_from_gcs(bucket_name, blob_name):
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
return blob.download_as_bytes()
def get_model_or_download(model_id, redis_key, loader_func):
model = load_object_from_redis(redis_key)
if model:
return model
try:
with tqdm(total=1, desc=f"Downloading {model_id}") as pbar:
model = loader_func(model_id, torch_dtype=torch.float16)
pbar.update(1)
save_object_to_redis(redis_key, model)
model_bytes = pickle.dumps(model)
upload_to_gcs(gcs_bucket_name, redis_key, model_bytes)
except Exception as e:
print(f"Failed to load or save model: {e}")
return None
def generate_image(prompt):
redis_key = f"generated_image:{prompt}"
image_bytes = load_object_from_redis(redis_key)
if not image_bytes:
try:
with tqdm(total=1, desc="Generating image") as pbar:
image = text_to_image_pipeline(prompt).images[0]
pbar.update(1)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
save_object_to_redis(redis_key, image_bytes)
upload_to_gcs(gcs_bucket_name, redis_key, image_bytes)
except Exception as e:
print(f"Failed to generate image: {e}")
return None
return image_bytes
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
redis_key = f"edited_image:{prompt}:{strength}"
edited_image_bytes = load_object_from_redis(redis_key)
if not edited_image_bytes:
try:
image = Image.open(io.BytesIO(image_bytes))
with tqdm(total=1, desc="Editing image") as pbar:
edited_image = img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0]
pbar.update(1)
buffered = io.BytesIO()
edited_image.save(buffered, format="JPEG")
edited_image_bytes = buffered.getvalue()
save_object_to_redis(redis_key, edited_image_bytes)
upload_to_gcs(gcs_bucket_name, redis_key, edited_image_bytes)
except Exception as e:
print(f"Failed to edit image: {e}")
return None
return edited_image_bytes
def generate_song(prompt, duration=10):
redis_key = f"generated_song:{prompt}:{duration}"
song_bytes = load_object_from_redis(redis_key)
if not song_bytes:
try:
with tqdm(total=1, desc="Generating song") as pbar:
song = music_gen.generate([prompt], duration=[duration])
pbar.update(1)
song_bytes = song[0].getvalue()
save_object_to_redis(redis_key, song_bytes)
upload_to_gcs(gcs_bucket_name, redis_key, song_bytes)
except Exception as e:
print(f"Failed to generate song: {e}")
return None
return song_bytes
def generate_text(prompt):
redis_key = f"generated_text:{prompt}"
text = load_object_from_redis(redis_key)
if not text:
try:
with tqdm(total=1, desc="Generating text") as pbar:
text = text_gen_pipeline(prompt, max_new_tokens=256)[0]["generated_text"].strip()
pbar.update(1)
save_object_to_redis(redis_key, text)
upload_to_gcs(gcs_bucket_name, redis_key, text.encode())
except Exception as e:
print(f"Failed to generate text: {e}")
return None
return text
def generate_flux_image(prompt):
redis_key = f"generated_flux_image:{prompt}"
flux_image_bytes = load_object_from_redis(redis_key)
if not flux_image_bytes:
try:
with tqdm(total=1, desc="Generating FLUX image") as pbar:
flux_image = flux_pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
pbar.update(1)
buffered = io.BytesIO()
flux_image.save(buffered, format="JPEG")
flux_image_bytes = buffered.getvalue()
save_object_to_redis(redis_key, flux_image_bytes)
upload_to_gcs(gcs_bucket_name, redis_key, flux_image_bytes)
except Exception as e:
print(f"Failed to generate flux image: {e}")
return None
return flux_image_bytes
def generate_code(prompt):
redis_key = f"generated_code:{prompt}"
code = load_object_from_redis(redis_key)
if not code:
try:
with tqdm(total=1, desc="Generating code") as pbar:
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to(starcoder_model.device)
outputs = starcoder_model.generate(inputs)
code = starcoder_tokenizer.decode(outputs[0])
pbar.update(1)
save_object_to_redis(redis_key, code)
upload_to_gcs(gcs_bucket_name, redis_key, code.encode())
except Exception as e:
print(f"Failed to generate code: {e}")
return None
return code
def generate_video(prompt):
redis_key = f"generated_video:{prompt}"
video = load_object_from_redis(redis_key)
if not video:
try:
with tqdm(total=1, desc="Generating video") as pbar:
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
video = export_to_video(pipe(prompt, num_inference_steps=25).frames)
pbar.update(1)
save_object_to_redis(redis_key, video)
upload_to_gcs(gcs_bucket_name, redis_key, video.encode())
except Exception as e:
print(f"Failed to generate video: {e}")
return None
return video
def test_model_meta_llama():
redis_key = "meta_llama_test_response"
response = load_object_from_redis(redis_key)
if not response:
try:
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"}
]
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
response = meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"].strip()
pbar.update(1)
save_object_to_redis(redis_key, response)
upload_to_gcs(gcs_bucket_name, redis_key, response.encode())
except Exception as e:
print(f"Failed to test Meta-Llama: {e}")
return None
return response
def train_model(model, dataset, epochs, batch_size, learning_rate):
output_dir = io.BytesIO()
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
learning_rate=learning_rate,
)
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
try:
with tqdm(total=epochs, desc="Training model") as pbar:
trainer.train()
pbar.update(epochs)
save_object_to_redis("trained_model", model)
save_object_to_redis("training_results", output_dir.getvalue())
upload_to_gcs(gcs_bucket_name, "trained_model", pickle.dumps(model))
upload_to_gcs(gcs_bucket_name, "training_results", output_dir.getvalue())
except Exception as e:
print(f"Failed to train model: {e}")
def run_task(task_queue):
while True:
task = task_queue.get()
if task is None:
break
func, args, kwargs = task
try:
func(*args, **kwargs)
except Exception as e:
print(f"Failed to run task: {e}")
task_queue = multiprocessing.Queue()
num_processes = multiprocessing.cpu_count()
processes = []
for _ in range(num_processes):
p = multiprocessing.Process(target=run_task, args=(task_queue,))
p.start()
processes.append(p)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
text_to_image_pipeline = get_model_or_download("stabilityai/stable-diffusion-2", "text_to_image_model", StableDiffusionPipeline.from_pretrained)
img2img_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained)
flux_pipeline = get_model_or_download("black-forest-labs/FLUX.1-schnell", "flux_model", FluxPipeline.from_pretrained)
text_gen_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b")
music_gen = load_object_from_redis("music_gen") or musicgen.MusicGen.get_pretrained('melody')
meta_llama_pipeline = get_model_or_download("meta-llama/Meta-Llama-3.1-8B-Instruct", "meta_llama_model", transformers_pipeline)
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
gen_image_tab = gr.Interface(fn=generate_image, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate Image")
edit_image_tab = gr.Interface(fn=edit_image_with_prompt, inputs=[gr.Image(type="pil", label="Image:"), gr.Textbox(label="Prompt:"), gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:")], outputs=gr.Image(type="pil"), title="Edit Image")
generate_song_tab = gr.Interface(fn=generate_song, inputs=[gr.Textbox(label="Prompt:"), gr.Slider(5, 60, 10, step=1, label="Duration (s):")], outputs=gr.Audio(type="numpy"), title="Generate Songs")
generate_text_tab = gr.Interface(fn=generate_text, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Generated Text:"), title="Generate Text")
generate_flux_image_tab = gr.Interface(fn=generate_flux_image, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Image(type="pil"), title="Generate FLUX Images")
generate_code_tab = gr.Interface(fn=generate_code, inputs=gr.Textbox(label="Prompt:"), outputs=gr.Textbox(label="Generated Code:"), title="Generate Code")
model_meta_llama_test_tab = gr.Interface(fn=test_model_meta_llama, inputs=None, outputs=gr.Textbox(label="Model Output:"), title="Test Meta-Llama")
app = gr.TabbedInterface(
[gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, generate_code_tab, model_meta_llama_test_tab],
["Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Generate Code", "Test Meta-Llama"]
)
app.launch(share=True)
for _ in range(num_processes):
task_queue.put(None)
for p in processes:
p.join() |