Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,084 Bytes
5a2160a 4c5c92a 5a2160a be24a5f 5a2160a 01fae66 5a2160a 5a3565c 5a2160a 5a3565c 5a2160a 5a3565c 5a2160a 5a3565c 5a2160a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import spaces
import gradio as gr
import torch
from PIL import Image
import random
import numpy as np
import torch
import os
import json
from datetime import datetime
from pipeline_rf import RectifiedFlowPipeline
# Load the Stable Diffusion Inpainting model
pipe = RectifiedFlowPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32)
pipe.to("cuda") # Comment this line if GPU is not available
# Function to process the image
@spaces.GPU(duration=20)
def process_image(
image_layers, prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
):
image_with_mask = {
"image": image_layers["background"],
"mask": image_layers["layers"][0] if mask_input is None else mask_input
}
# Set seed
if randomize_seed or seed is None:
seed = random.randint(0, 2**32 - 1)
generator = torch.Generator("cuda").manual_seed(int(seed))
# Unpack image and mask
if image_with_mask is None:
return None, f"❌ Please upload an image and create a mask."
image = image_with_mask["image"]
mask = image_with_mask["mask"]
if image is None or mask is None:
return None, f"❌ Please ensure both image and mask are provided."
# Convert images to RGB
image = image.convert("RGB")
mask = mask.split()[-1] # Convert mask to grayscale
if not prompt:
prompt = ""
with torch.autocast("cuda"):
# Placeholder for using advanced parameters in the future
# Adjust parameters according to advanced settings if applicable
result = pipe(
prompt=prompt,
negative_prompt="",
input_image=image.resize((512, 512)),
mask_image=mask.resize((512, 512)),
num_inference_steps=num_inference_steps,
guidance_scale=0.0,
generator=generator,
save_masked_image=False,
output_path="test.png",
learning_rate=learning_rate,
max_steps=max_steps,
optimization_steps=optimization_steps,
inverseproblem=inverseproblem
).images[0]
return result, f"✅ Inpainting completed with seed {seed}."
# Design the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
<style>
body {background-color: #f5f5f5; color: #333333;}
h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;}
h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;}
.gradio-container {max-width: 800px; margin: auto;}
.footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;}
</style>
"""
)
gr.Markdown("<h1>🍲 FlowChef 🍲</h1>")
gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of <u>InstaFlow (SDv1.5) for Inpainting (Inverse Problem)</u></h2>")
gr.Markdown("<h3><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h3>")
# gr.Markdown("<h3>💡 We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>")
gr.Markdown("<h3>⚡ For better performance, check out our demo on <a href='https://huggingface.co/spaces/FlowChef/FlowChef-Flux1-dev'>Flux</a>!</h3>")
# Store current state
current_input_image = None
current_mask = None
current_output_image = None
current_params = {}
# Images at the top
with gr.Row():
with gr.Column():
image_input = gr.ImageMask(
# source="upload",
# tool="sketch",
type="pil",
label="Input Image and Mask",
image_mode="RGBA",
height=512,
width=512,
)
with gr.Column():
output_image = gr.Image(label="Output Image")
# All options below
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what should appear in the masked area..."
)
with gr.Row():
seed = gr.Number(label="Seed (Optional)", value=None)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=50, maximum=200, value=100
)
# Advanced settings in an accordion
with gr.Accordion("Advanced Settings", open=False):
max_steps = gr.Slider(label="Max Steps", minimum=50, maximum=200, value=200)
learning_rate = gr.Slider(label="Learning Rate", minimum=0.01, maximum=0.5, value=0.02)
optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
inverseproblem = gr.Checkbox(label="Apply mask on pixel space (does not work well with HF ZeroGPU)", value=False, info="Enables inverse problem formulation for inpainting by masking the RGB image itself. Hence, to avoid artifacts we increase the mask size manually during inference.")
mask_input = gr.Image(
type="pil",
label="Optional Mask",
image_mode="RGBA",
)
with gr.Row():
run_button = gr.Button("Run", variant="primary")
# save_button = gr.Button("Save Data", variant="secondary")
# def update_visibility(selected_mode):
# if selected_mode == "Inpainting":
# return gr.update(visible=True), gr.update(visible=False)
# else:
# return gr.update(visible=True), gr.update(visible=True)
# mode.change(
# update_visibility,
# inputs=mode,
# outputs=[prompt, edit_prompt],
# )
def run_and_update_status(
image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
):
result_image, result_status = process_image(
image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
)
# Store current state
global current_input_image, current_mask, current_output_image, current_params
current_input_image = image_with_mask["background"] if image_with_mask else None
current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
current_output_image = result_image
current_params = {
"prompt": prompt,
"seed": seed,
"randomize_seed": randomize_seed,
"num_inference_steps": num_inference_steps,
"max_steps": max_steps,
"learning_rate": learning_rate,
"optimization_steps": optimization_steps,
"inverseproblem": inverseproblem,
}
return result_image
def save_data():
if not os.path.exists("saved_results"):
os.makedirs("saved_results")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = os.path.join("saved_results", timestamp)
os.makedirs(save_dir)
# Save images
if current_input_image:
current_input_image.save(os.path.join(save_dir, "input.png"))
if current_mask:
current_mask.save(os.path.join(save_dir, "mask.png"))
if current_output_image:
current_output_image.save(os.path.join(save_dir, "output.png"))
# Save parameters
with open(os.path.join(save_dir, "parameters.json"), "w") as f:
json.dump(current_params, f, indent=4)
return f"✅ Data saved in {save_dir}"
run_button.click(
fn=run_and_update_status,
inputs=[
image_input,
prompt,
seed,
randomize_seed,
num_inference_steps,
max_steps,
learning_rate,
optimization_steps,
inverseproblem,
mask_input
],
outputs=output_image,
)
# save_button.click(fn=save_data)
gr.Markdown(
"<div class='footer'>Developed with ❤️ using InstaFlow (Stable Diffusion v1.5) and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>"
)
def load_example_image_with_mask(image_path):
# Load the image
image = Image.open(image_path)
# Create an empty mask of the same size
mask = Image.new('L', image.size, 0)
return {"background": image, "layers": [mask], "composite": image}
examples_dir = "assets"
volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
gr.Examples(
examples=[
[
"./saved_results/20241129_210517/input.png", # image with mask
"./saved_results/20241129_210517/mask.png",
"./saved_results/20241129_210517/output.png",
"a cat", # prompt
0, # seed
True, # randomize_seed
200, # num_inference_steps
200, # max_steps
0.1, # learning_rate
1, # optimization_steps
False,
],
[
"./saved_results/20241129_211124/input.png", # image with mask
"./saved_results/20241129_211124/mask.png",
"./saved_results/20241129_211124/output.png",
" ", # prompt
0, # seed
True, # randomize_seed
200, # num_inference_steps
200, # max_steps
0.1, # learning_rate
5, # optimization_steps
False,
],
[
"./saved_results/20241129_212001/input.png", # image with mask
"./saved_results/20241129_212001/mask.png",
"./saved_results/20241129_212001/output.png",
" ", # prompt
52, # seed
False, # randomize_seed
200, # num_inference_steps
200, # max_steps
0.02, # learning_rate
10, # optimization_steps
False,
],
[
"./saved_results/20241129_212052/input.png", # image with mask
"./saved_results/20241129_212052/mask.png",
"./saved_results/20241129_212052/output.png",
" ", # prompt
52, # seed
False, # randomize_seed
200, # num_inference_steps
200, # max_steps
0.02, # learning_rate
10, # optimization_steps
False,
],
[
"./saved_results/20241129_212155/input.png", # image with mask
"./saved_results/20241129_212155/mask.png",
"./saved_results/20241129_212155/output.png",
" ", # prompt
52, # seed
False, # randomize_seed
200, # num_inference_steps
200, # max_steps
0.02, # learning_rate
10, # optimization_steps
False,
],
],
inputs=[
image_input,
mask_input,
output_image,
prompt,
seed,
randomize_seed,
num_inference_steps,
max_steps,
learning_rate,
optimization_steps,
inverseproblem
],
# outputs=[output_image],
# fn=run_and_update_status,
# cache_examples=True,
)
demo.launch()
|