mpatel57 commited on
Commit
5a2160a
1 Parent(s): d60e2fd

Upload 50 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +8 -0
  2. app.py +317 -0
  3. assets/dog.webp +0 -0
  4. assets/vulcano.jpg +0 -0
  5. assets/vulcano_mask.webp +0 -0
  6. pipeline_rf.py +732 -0
  7. requirements.txt +9 -0
  8. saved_results/20241129_210517/input.png +0 -0
  9. saved_results/20241129_210517/mask.png +0 -0
  10. saved_results/20241129_210517/output.png +0 -0
  11. saved_results/20241129_210517/parameters.json +10 -0
  12. saved_results/20241129_211124/input.png +0 -0
  13. saved_results/20241129_211124/mask.png +0 -0
  14. saved_results/20241129_211124/output.png +0 -0
  15. saved_results/20241129_211124/parameters.json +10 -0
  16. saved_results/20241129_211142/input.png +0 -0
  17. saved_results/20241129_211142/mask.png +0 -0
  18. saved_results/20241129_211142/output.png +0 -0
  19. saved_results/20241129_211142/parameters.json +10 -0
  20. saved_results/20241129_211621/input.png +3 -0
  21. saved_results/20241129_211621/mask.png +0 -0
  22. saved_results/20241129_211621/output.png +0 -0
  23. saved_results/20241129_211621/parameters.json +10 -0
  24. saved_results/20241129_211904/input.png +3 -0
  25. saved_results/20241129_211904/mask.png +0 -0
  26. saved_results/20241129_211904/output.png +0 -0
  27. saved_results/20241129_211904/parameters.json +10 -0
  28. saved_results/20241129_212001/input.png +3 -0
  29. saved_results/20241129_212001/mask.png +0 -0
  30. saved_results/20241129_212001/output.png +0 -0
  31. saved_results/20241129_212001/parameters.json +10 -0
  32. saved_results/20241129_212022/input.png +3 -0
  33. saved_results/20241129_212022/mask.png +0 -0
  34. saved_results/20241129_212022/output.png +0 -0
  35. saved_results/20241129_212022/parameters.json +10 -0
  36. saved_results/20241129_212052/input.png +3 -0
  37. saved_results/20241129_212052/mask.png +0 -0
  38. saved_results/20241129_212052/output.png +0 -0
  39. saved_results/20241129_212052/parameters.json +10 -0
  40. saved_results/20241129_212110/input.png +3 -0
  41. saved_results/20241129_212110/mask.png +0 -0
  42. saved_results/20241129_212110/output.png +0 -0
  43. saved_results/20241129_212110/parameters.json +10 -0
  44. saved_results/20241129_212155/input.png +3 -0
  45. saved_results/20241129_212155/mask.png +0 -0
  46. saved_results/20241129_212155/output.png +0 -0
  47. saved_results/20241129_212155/parameters.json +10 -0
  48. saved_results/20241129_212220/input.png +3 -0
  49. saved_results/20241129_212220/mask.png +0 -0
  50. saved_results/20241129_212220/output.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ saved_results/20241129_211621/input.png filter=lfs diff=lfs merge=lfs -text
37
+ saved_results/20241129_211904/input.png filter=lfs diff=lfs merge=lfs -text
38
+ saved_results/20241129_212001/input.png filter=lfs diff=lfs merge=lfs -text
39
+ saved_results/20241129_212022/input.png filter=lfs diff=lfs merge=lfs -text
40
+ saved_results/20241129_212052/input.png filter=lfs diff=lfs merge=lfs -text
41
+ saved_results/20241129_212110/input.png filter=lfs diff=lfs merge=lfs -text
42
+ saved_results/20241129_212155/input.png filter=lfs diff=lfs merge=lfs -text
43
+ saved_results/20241129_212220/input.png filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
+ import random
6
+ import numpy as np
7
+ import torch
8
+ import os
9
+ import json
10
+ from datetime import datetime
11
+
12
+ from pipeline_rf import RectifiedFlowPipeline
13
+
14
+ # Load the Stable Diffusion Inpainting model
15
+ pipe = RectifiedFlowPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32)
16
+ pipe.to("cuda") # Comment this line if GPU is not available
17
+
18
+ # Function to process the image
19
+ @spaces.GPU(duration=20)
20
+ def process_image(
21
+ image_layers, prompt, seed, randomize_seed, num_inference_steps,
22
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
23
+ ):
24
+ image_with_mask = {
25
+ "image": image_layers["background"],
26
+ "mask": image_layers["layers"][0] if mask_input is None else mask_input
27
+ }
28
+
29
+ # Set seed
30
+ if randomize_seed or seed is None:
31
+ seed = random.randint(0, 2**32 - 1)
32
+ generator = torch.Generator("cuda").manual_seed(int(seed))
33
+
34
+ # Unpack image and mask
35
+ if image_with_mask is None:
36
+ return None, f"❌ Please upload an image and create a mask."
37
+ image = image_with_mask["image"]
38
+ mask = image_with_mask["mask"]
39
+
40
+ if image is None or mask is None:
41
+ return None, f"❌ Please ensure both image and mask are provided."
42
+
43
+ # Convert images to RGB
44
+ image = image.convert("RGB")
45
+ mask = mask.split()[-1] # Convert mask to grayscale
46
+
47
+ if not prompt:
48
+ return None, f"❌ Please provide a prompt for inpainting."
49
+ with torch.autocast("cuda"):
50
+ # Placeholder for using advanced parameters in the future
51
+ # Adjust parameters according to advanced settings if applicable
52
+ result = pipe(
53
+ prompt=prompt,
54
+ negative_prompt="",
55
+ input_image=image.resize((512, 512)),
56
+ mask_image=mask.resize((512, 512)),
57
+ num_inference_steps=num_inference_steps,
58
+ guidance_scale=0.0,
59
+ generator=generator,
60
+ save_masked_image=True,
61
+ output_path="test.png",
62
+ learning_rate=learning_rate,
63
+ max_steps=max_steps,
64
+ optimization_steps=optimization_steps,
65
+ inverseproblem=inverseproblem
66
+ ).images[0]
67
+ return result, f"✅ Inpainting completed with seed {seed}."
68
+
69
+ # Design the Gradio interface
70
+ with gr.Blocks() as demo:
71
+ gr.Markdown(
72
+ """
73
+ <style>
74
+ body {background-color: #f5f5f5; color: #333333;}
75
+ h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;}
76
+ h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;}
77
+ .gradio-container {max-width: 800px; margin: auto;}
78
+ .footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;}
79
+ </style>
80
+ """
81
+ )
82
+ gr.Markdown("<h1>🍲 FlowChef 🍲</h1>")
83
+ gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of <u>InstaFlow (SDv1.5) for Inpainting (Inverse Problem)</u></h2>")
84
+ gr.Markdown("<h3><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h3>")
85
+ gr.Markdown("<h3>💡 We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>")
86
+ gr.Markdown("<h3>⚡ For better performance, check out our demo on <a href='https://huggingface.co/spaces/FlowChef/FlowChef-Flux1-dev'>Flux</a>!</h3>")
87
+
88
+ # Store current state
89
+ current_input_image = None
90
+ current_mask = None
91
+ current_output_image = None
92
+ current_params = {}
93
+
94
+ # Images at the top
95
+ with gr.Row():
96
+ with gr.Column():
97
+ image_input = gr.ImageMask(
98
+ # source="upload",
99
+ # tool="sketch",
100
+ type="pil",
101
+ label="Input Image and Mask",
102
+ image_mode="RGBA",
103
+ height=512,
104
+ width=512,
105
+ )
106
+ with gr.Column():
107
+ output_image = gr.Image(label="Output Image")
108
+
109
+ # All options below
110
+ with gr.Column():
111
+ prompt = gr.Textbox(
112
+ label="Prompt",
113
+ placeholder="Describe what should appear in the masked area..."
114
+ )
115
+ with gr.Row():
116
+ seed = gr.Number(label="Seed (Optional)", value=None)
117
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
118
+ num_inference_steps = gr.Slider(
119
+ label="Inference Steps", minimum=50, maximum=200, value=100
120
+ )
121
+ # Advanced settings in an accordion
122
+ with gr.Accordion("Advanced Settings", open=False):
123
+ max_steps = gr.Slider(label="Max Steps", minimum=50, maximum=200, value=200)
124
+ learning_rate = gr.Slider(label="Learning Rate", minimum=0.01, maximum=0.5, value=0.02)
125
+ optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
126
+ inverseproblem = gr.Checkbox(label="Apply mask on pixel space", value=False, info="Enables inverse problem formulation for inpainting by masking the RGB image itself. Hence, to avoid artifacts we increase the mask size manually during inference.")
127
+ mask_input = gr.Image(
128
+ type="pil",
129
+ label="Optional Mask",
130
+ image_mode="RGBA",
131
+ )
132
+ with gr.Row():
133
+ run_button = gr.Button("Run", variant="primary")
134
+ # save_button = gr.Button("Save Data", variant="secondary")
135
+
136
+ # def update_visibility(selected_mode):
137
+ # if selected_mode == "Inpainting":
138
+ # return gr.update(visible=True), gr.update(visible=False)
139
+ # else:
140
+ # return gr.update(visible=True), gr.update(visible=True)
141
+
142
+ # mode.change(
143
+ # update_visibility,
144
+ # inputs=mode,
145
+ # outputs=[prompt, edit_prompt],
146
+ # )
147
+
148
+ def run_and_update_status(
149
+ image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
150
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
151
+ ):
152
+ result_image, result_status = process_image(
153
+ image_with_mask, prompt, seed, randomize_seed, num_inference_steps,
154
+ max_steps, learning_rate, optimization_steps, inverseproblem, mask_input
155
+ )
156
+
157
+ # Store current state
158
+ global current_input_image, current_mask, current_output_image, current_params
159
+
160
+ current_input_image = image_with_mask["background"] if image_with_mask else None
161
+ current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
162
+ current_output_image = result_image
163
+ current_params = {
164
+ "prompt": prompt,
165
+ "seed": seed,
166
+ "randomize_seed": randomize_seed,
167
+ "num_inference_steps": num_inference_steps,
168
+ "max_steps": max_steps,
169
+ "learning_rate": learning_rate,
170
+ "optimization_steps": optimization_steps,
171
+ "inverseproblem": inverseproblem,
172
+ }
173
+
174
+ return result_image
175
+
176
+ def save_data():
177
+ if not os.path.exists("saved_results"):
178
+ os.makedirs("saved_results")
179
+
180
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
181
+ save_dir = os.path.join("saved_results", timestamp)
182
+ os.makedirs(save_dir)
183
+
184
+ # Save images
185
+ if current_input_image:
186
+ current_input_image.save(os.path.join(save_dir, "input.png"))
187
+ if current_mask:
188
+ current_mask.save(os.path.join(save_dir, "mask.png"))
189
+ if current_output_image:
190
+ current_output_image.save(os.path.join(save_dir, "output.png"))
191
+
192
+ # Save parameters
193
+ with open(os.path.join(save_dir, "parameters.json"), "w") as f:
194
+ json.dump(current_params, f, indent=4)
195
+
196
+ return f"✅ Data saved in {save_dir}"
197
+
198
+ run_button.click(
199
+ fn=run_and_update_status,
200
+ inputs=[
201
+ image_input,
202
+ prompt,
203
+ seed,
204
+ randomize_seed,
205
+ num_inference_steps,
206
+ max_steps,
207
+ learning_rate,
208
+ optimization_steps,
209
+ inverseproblem,
210
+ mask_input
211
+ ],
212
+ outputs=output_image,
213
+ )
214
+
215
+ # save_button.click(fn=save_data)
216
+
217
+ gr.Markdown(
218
+ "<div class='footer'>Developed with ❤️ using InstaFlow (Stable Diffusion v1.5) and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>"
219
+ )
220
+
221
+ def load_example_image_with_mask(image_path):
222
+ # Load the image
223
+ image = Image.open(image_path)
224
+ # Create an empty mask of the same size
225
+ mask = Image.new('L', image.size, 0)
226
+ return {"background": image, "layers": [mask], "composite": image}
227
+
228
+ examples_dir = "assets"
229
+ volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
230
+ dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
231
+
232
+ gr.Examples(
233
+ examples=[
234
+ [
235
+ "./saved_results/20241129_210517/input.png", # image with mask
236
+ "./saved_results/20241129_210517/mask.png",
237
+ "./saved_results/20241129_210517/output.png",
238
+ "a cat", # prompt
239
+ 0, # seed
240
+ True, # randomize_seed
241
+ 200, # num_inference_steps
242
+ 200, # max_steps
243
+ 0.1, # learning_rate
244
+ 1, # optimization_steps
245
+ False,
246
+ ],
247
+ [
248
+ "./saved_results/20241129_211124/input.png", # image with mask
249
+ "./saved_results/20241129_211124/mask.png",
250
+ "./saved_results/20241129_211124/output.png",
251
+ " ", # prompt
252
+ 0, # seed
253
+ True, # randomize_seed
254
+ 200, # num_inference_steps
255
+ 200, # max_steps
256
+ 0.1, # learning_rate
257
+ 5, # optimization_steps
258
+ False,
259
+ ],
260
+ [
261
+ "./saved_results/20241129_212001/input.png", # image with mask
262
+ "./saved_results/20241129_212001/mask.png",
263
+ "./saved_results/20241129_212001/output.png",
264
+ " ", # prompt
265
+ 52, # seed
266
+ False, # randomize_seed
267
+ 200, # num_inference_steps
268
+ 200, # max_steps
269
+ 0.02, # learning_rate
270
+ 10, # optimization_steps
271
+ True,
272
+ ],
273
+ [
274
+ "./saved_results/20241129_212052/input.png", # image with mask
275
+ "./saved_results/20241129_212052/mask.png",
276
+ "./saved_results/20241129_212052/output.png",
277
+ " ", # prompt
278
+ 52, # seed
279
+ False, # randomize_seed
280
+ 200, # num_inference_steps
281
+ 200, # max_steps
282
+ 0.02, # learning_rate
283
+ 10, # optimization_steps
284
+ True,
285
+ ],
286
+ [
287
+ "./saved_results/20241129_212155/input.png", # image with mask
288
+ "./saved_results/20241129_212155/mask.png",
289
+ "./saved_results/20241129_212155/output.png",
290
+ " ", # prompt
291
+ 52, # seed
292
+ False, # randomize_seed
293
+ 200, # num_inference_steps
294
+ 200, # max_steps
295
+ 0.02, # learning_rate
296
+ 10, # optimization_steps
297
+ True,
298
+ ],
299
+ ],
300
+ inputs=[
301
+ image_input,
302
+ mask_input,
303
+ output_image,
304
+ prompt,
305
+ seed,
306
+ randomize_seed,
307
+ num_inference_steps,
308
+ max_steps,
309
+ learning_rate,
310
+ optimization_steps,
311
+ inverseproblem
312
+ ],
313
+ # outputs=[output_image],
314
+ # fn=run_and_update_status,
315
+ # cache_examples=True,
316
+ )
317
+ demo.launch()
assets/dog.webp ADDED
assets/vulcano.jpg ADDED
assets/vulcano_mask.webp ADDED
pipeline_rf.py ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from packaging import version
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
21
+
22
+ from diffusers.configuration_utils import FrozenDict
23
+ from diffusers.image_processor import VaeImageProcessor
24
+ from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
25
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
26
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
27
+ from diffusers.schedulers import KarrasDiffusionSchedulers
28
+ from diffusers.utils import (
29
+ deprecate,
30
+ logging,
31
+ replace_example_docstring,
32
+ )
33
+ from diffusers.utils.torch_utils import randn_tensor
34
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
35
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
36
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
37
+
38
+ import os
39
+ import torch
40
+
41
+ from torchvision import transforms as TF
42
+
43
+ import sys
44
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
45
+ sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ def retrieve_latents(
50
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
51
+ ):
52
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
53
+ return encoder_output.latent_dist.sample(generator)
54
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
55
+ return encoder_output.latent_dist.mode()
56
+ elif hasattr(encoder_output, "latents"):
57
+ return encoder_output.latents
58
+ else:
59
+ raise AttributeError("Could not access latents of provided encoder_output")
60
+
61
+
62
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
63
+ """
64
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
65
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
66
+ """
67
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
68
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
69
+ # rescale the results from guidance (fixes overexposure)
70
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
71
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
72
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
73
+ return noise_cfg
74
+
75
+
76
+ class RectifiedFlowPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
77
+ r"""
78
+ Pipeline for text-to-image generation using Rectified Flow and Euler discretization.
79
+ This customized pipeline is based on StableDiffusionPipeline from the official Diffusers library (0.21.4)
80
+
81
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
82
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
83
+
84
+ The pipeline also inherits the following loading methods:
85
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
86
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
87
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
88
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
89
+
90
+ Args:
91
+ vae ([`AutoencoderKL`]):
92
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
93
+ text_encoder ([`~transformers.CLIPTextModel`]):
94
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
95
+ tokenizer ([`~transformers.CLIPTokenizer`]):
96
+ A `CLIPTokenizer` to tokenize text.
97
+ unet ([`UNet2DConditionModel`]):
98
+ A `UNet2DConditionModel` to denoise the encoded image latents.
99
+ scheduler ([`SchedulerMixin`]):
100
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
101
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
102
+ safety_checker ([`StableDiffusionSafetyChecker`]):
103
+ Classification module that estimates whether generated images could be considered offensive or harmful.
104
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
105
+ about a model's potential harms.
106
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
107
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
108
+ """
109
+ model_cpu_offload_seq = "text_encoder->unet->vae"
110
+ _optional_components = ["safety_checker", "feature_extractor"]
111
+ _exclude_from_cpu_offload = ["safety_checker"]
112
+
113
+ def __init__(
114
+ self,
115
+ vae: AutoencoderKL,
116
+ text_encoder: CLIPTextModel,
117
+ tokenizer: CLIPTokenizer,
118
+ unet: UNet2DConditionModel,
119
+ scheduler: KarrasDiffusionSchedulers,
120
+ safety_checker: StableDiffusionSafetyChecker,
121
+ feature_extractor: CLIPImageProcessor,
122
+ requires_safety_checker: bool = True,
123
+ ):
124
+ super().__init__()
125
+
126
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
127
+ deprecation_message = (
128
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
129
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
130
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
131
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
132
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
133
+ " file"
134
+ )
135
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
136
+ new_config = dict(scheduler.config)
137
+ new_config["steps_offset"] = 1
138
+ scheduler._internal_dict = FrozenDict(new_config)
139
+
140
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
141
+ deprecation_message = (
142
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
143
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
144
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
145
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
146
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
147
+ )
148
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
149
+ new_config = dict(scheduler.config)
150
+ new_config["clip_sample"] = False
151
+ scheduler._internal_dict = FrozenDict(new_config)
152
+
153
+ if safety_checker is None and requires_safety_checker:
154
+ logger.warning(
155
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
156
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
157
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
158
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
159
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
160
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
161
+ )
162
+
163
+ if safety_checker is not None and feature_extractor is None:
164
+ raise ValueError(
165
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
166
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
167
+ )
168
+
169
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
170
+ version.parse(unet.config._diffusers_version).base_version
171
+ ) < version.parse("0.9.0.dev0")
172
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
173
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
174
+ deprecation_message = (
175
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
176
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
177
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
178
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
179
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
180
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
181
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
182
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
183
+ " the `unet/config.json` file"
184
+ )
185
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
186
+ new_config = dict(unet.config)
187
+ new_config["sample_size"] = 64
188
+ unet._internal_dict = FrozenDict(new_config)
189
+
190
+ self.register_modules(
191
+ vae=vae,
192
+ text_encoder=text_encoder,
193
+ tokenizer=tokenizer,
194
+ unet=unet,
195
+ scheduler=scheduler,
196
+ safety_checker=safety_checker,
197
+ feature_extractor=feature_extractor,
198
+ )
199
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
200
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
201
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
202
+
203
+ def enable_vae_slicing(self):
204
+ r"""
205
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
206
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
207
+ """
208
+ self.vae.enable_slicing()
209
+
210
+ def disable_vae_slicing(self):
211
+ r"""
212
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
213
+ computing decoding in one step.
214
+ """
215
+ self.vae.disable_slicing()
216
+
217
+ def enable_vae_tiling(self):
218
+ r"""
219
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
220
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
221
+ processing larger images.
222
+ """
223
+ self.vae.enable_tiling()
224
+
225
+ def disable_vae_tiling(self):
226
+ r"""
227
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
228
+ computing decoding in one step.
229
+ """
230
+ self.vae.disable_tiling()
231
+
232
+ def _encode_prompt(
233
+ self,
234
+ prompt,
235
+ device,
236
+ num_images_per_prompt,
237
+ do_classifier_free_guidance,
238
+ negative_prompt=None,
239
+ prompt_embeds: Optional[torch.FloatTensor] = None,
240
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
241
+ lora_scale: Optional[float] = None,
242
+ ):
243
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
244
+ deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
245
+
246
+ prompt_embeds_tuple = self.encode_prompt(
247
+ prompt=prompt,
248
+ device=device,
249
+ num_images_per_prompt=num_images_per_prompt,
250
+ do_classifier_free_guidance=do_classifier_free_guidance,
251
+ negative_prompt=negative_prompt,
252
+ prompt_embeds=prompt_embeds,
253
+ negative_prompt_embeds=negative_prompt_embeds,
254
+ lora_scale=lora_scale,
255
+ )
256
+
257
+ # concatenate for backwards comp
258
+ prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
259
+
260
+ return prompt_embeds
261
+
262
+ def encode_prompt(
263
+ self,
264
+ prompt,
265
+ device,
266
+ num_images_per_prompt,
267
+ do_classifier_free_guidance,
268
+ negative_prompt=None,
269
+ prompt_embeds: Optional[torch.FloatTensor] = None,
270
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
271
+ lora_scale: Optional[float] = None,
272
+ ):
273
+ r"""
274
+ Encodes the prompt into text encoder hidden states.
275
+
276
+ Args:
277
+ prompt (`str` or `List[str]`, *optional*):
278
+ prompt to be encoded
279
+ device: (`torch.device`):
280
+ torch device
281
+ num_images_per_prompt (`int`):
282
+ number of images that should be generated per prompt
283
+ do_classifier_free_guidance (`bool`):
284
+ whether to use classifier free guidance or not
285
+ negative_prompt (`str` or `List[str]`, *optional*):
286
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
287
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
288
+ less than `1`).
289
+ prompt_embeds (`torch.FloatTensor`, *optional*):
290
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
291
+ provided, text embeddings will be generated from `prompt` input argument.
292
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
293
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
294
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
295
+ argument.
296
+ lora_scale (`float`, *optional*):
297
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
298
+ """
299
+ # set lora scale so that monkey patched LoRA
300
+ # function of text encoder can correctly access it
301
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
302
+ self._lora_scale = lora_scale
303
+
304
+ # dynamically adjust the LoRA scale
305
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
306
+
307
+ if prompt is not None and isinstance(prompt, str):
308
+ batch_size = 1
309
+ elif prompt is not None and isinstance(prompt, list):
310
+ batch_size = len(prompt)
311
+ else:
312
+ batch_size = prompt_embeds.shape[0]
313
+
314
+ if prompt_embeds is None:
315
+ # textual inversion: procecss multi-vector tokens if necessary
316
+ if isinstance(self, TextualInversionLoaderMixin):
317
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
318
+
319
+ text_inputs = self.tokenizer(
320
+ prompt,
321
+ padding="max_length",
322
+ max_length=self.tokenizer.model_max_length,
323
+ truncation=True,
324
+ return_tensors="pt",
325
+ )
326
+ text_input_ids = text_inputs.input_ids
327
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
328
+
329
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
330
+ text_input_ids, untruncated_ids
331
+ ):
332
+ removed_text = self.tokenizer.batch_decode(
333
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
334
+ )
335
+ logger.warning(
336
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
337
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
338
+ )
339
+
340
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
341
+ attention_mask = text_inputs.attention_mask.to(device)
342
+ else:
343
+ attention_mask = None
344
+
345
+ prompt_embeds = self.text_encoder(
346
+ text_input_ids.to(device),
347
+ attention_mask=attention_mask,
348
+ )
349
+ prompt_embeds = prompt_embeds[0]
350
+
351
+ if self.text_encoder is not None:
352
+ prompt_embeds_dtype = self.text_encoder.dtype
353
+ elif self.unet is not None:
354
+ prompt_embeds_dtype = self.unet.dtype
355
+ else:
356
+ prompt_embeds_dtype = prompt_embeds.dtype
357
+
358
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
359
+
360
+ bs_embed, seq_len, _ = prompt_embeds.shape
361
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
362
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
363
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
364
+
365
+ # get unconditional embeddings for classifier free guidance
366
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
367
+ uncond_tokens: List[str]
368
+ if negative_prompt is None:
369
+ uncond_tokens = [""] * batch_size
370
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
371
+ raise TypeError(
372
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
373
+ f" {type(prompt)}."
374
+ )
375
+ elif isinstance(negative_prompt, str):
376
+ uncond_tokens = [negative_prompt]
377
+ elif batch_size != len(negative_prompt):
378
+ raise ValueError(
379
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
380
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
381
+ " the batch size of `prompt`."
382
+ )
383
+ else:
384
+ uncond_tokens = negative_prompt
385
+
386
+ # textual inversion: procecss multi-vector tokens if necessary
387
+ if isinstance(self, TextualInversionLoaderMixin):
388
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
389
+
390
+ max_length = prompt_embeds.shape[1]
391
+ uncond_input = self.tokenizer(
392
+ uncond_tokens,
393
+ padding="max_length",
394
+ max_length=max_length,
395
+ truncation=True,
396
+ return_tensors="pt",
397
+ )
398
+
399
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
400
+ attention_mask = uncond_input.attention_mask.to(device)
401
+ else:
402
+ attention_mask = None
403
+
404
+ negative_prompt_embeds = self.text_encoder(
405
+ uncond_input.input_ids.to(device),
406
+ attention_mask=attention_mask,
407
+ )
408
+ negative_prompt_embeds = negative_prompt_embeds[0]
409
+
410
+ if do_classifier_free_guidance:
411
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
412
+ seq_len = negative_prompt_embeds.shape[1]
413
+
414
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
415
+
416
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
417
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
418
+
419
+ return prompt_embeds, negative_prompt_embeds
420
+
421
+ def run_safety_checker(self, image, device, dtype):
422
+ if self.safety_checker is None:
423
+ has_nsfw_concept = None
424
+ else:
425
+ if torch.is_tensor(image):
426
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
427
+ else:
428
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
429
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
430
+ image, has_nsfw_concept = self.safety_checker(
431
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
432
+ )
433
+ return image, has_nsfw_concept
434
+
435
+ def decode_latents(self, latents):
436
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
437
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
438
+
439
+ latents = 1 / self.vae.config.scaling_factor * latents
440
+ image = self.vae.decode(latents, return_dict=False)[0]
441
+ image = (image / 2 + 0.5).clamp(0, 1)
442
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
443
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
444
+ return image
445
+
446
+ def prepare_extra_step_kwargs(self, generator, eta):
447
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
448
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
449
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
450
+ # and should be between [0, 1]
451
+
452
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
453
+ extra_step_kwargs = {}
454
+ if accepts_eta:
455
+ extra_step_kwargs["eta"] = eta
456
+
457
+ # check if the scheduler accepts generator
458
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
459
+ if accepts_generator:
460
+ extra_step_kwargs["generator"] = generator
461
+ return extra_step_kwargs
462
+
463
+ def check_inputs(
464
+ self,
465
+ prompt,
466
+ height,
467
+ width,
468
+ callback_steps,
469
+ negative_prompt=None,
470
+ prompt_embeds=None,
471
+ negative_prompt_embeds=None,
472
+ ):
473
+ if height % 8 != 0 or width % 8 != 0:
474
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
475
+
476
+ if (callback_steps is None) or (
477
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
478
+ ):
479
+ raise ValueError(
480
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
481
+ f" {type(callback_steps)}."
482
+ )
483
+
484
+ if prompt is not None and prompt_embeds is not None:
485
+ raise ValueError(
486
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
487
+ " only forward one of the two."
488
+ )
489
+ elif prompt is None and prompt_embeds is None:
490
+ raise ValueError(
491
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
492
+ )
493
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
494
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
495
+
496
+ if negative_prompt is not None and negative_prompt_embeds is not None:
497
+ raise ValueError(
498
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
499
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
500
+ )
501
+
502
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
503
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
504
+ raise ValueError(
505
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
506
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
507
+ f" {negative_prompt_embeds.shape}."
508
+ )
509
+
510
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
511
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
512
+ if isinstance(generator, list) and len(generator) != batch_size:
513
+ raise ValueError(
514
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
515
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
516
+ )
517
+
518
+ if latents is None:
519
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
520
+ else:
521
+ latents = latents.to(device)
522
+
523
+ # scale the initial noise by the standard deviation required by the scheduler
524
+ latents = latents * self.scheduler.init_noise_sigma
525
+ return latents
526
+
527
+ @torch.no_grad()
528
+ def __call__(
529
+ self,
530
+ prompt: Union[str, List[str]] = None,
531
+ height: Optional[int] = None,
532
+ width: Optional[int] = None,
533
+ num_inference_steps: int = 50,
534
+ guidance_scale: float = 7.5,
535
+ negative_prompt: Optional[Union[str, List[str]]] = None,
536
+ num_images_per_prompt: Optional[int] = 1,
537
+ eta: float = 0.0,
538
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
539
+ latents: Optional[torch.FloatTensor] = None,
540
+ prompt_embeds: Optional[torch.FloatTensor] = None,
541
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
542
+ output_type: Optional[str] = "pil",
543
+ return_dict: bool = True,
544
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
545
+ callback_steps: int = 1,
546
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
547
+ guidance_rescale: float = 0.0,
548
+ optimization_steps: int = 1,
549
+ learning_rate: float = 0.05,
550
+ max_steps: int = 50,
551
+ input_image = None,
552
+ mask_image = None,
553
+ save_masked_image = False,
554
+ output_path : str = "",
555
+ inverseproblem: bool = False,
556
+ ):
557
+ assert input_image is not None, "Please provide an input image for the inpainting task."
558
+
559
+ # 0. Default height and width to unet
560
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
561
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
562
+
563
+ # 1. Check inputs
564
+ self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
565
+
566
+ # 2. Define call parameters
567
+ batch_size = 1 if prompt is None else (1 if isinstance(prompt, str) else len(prompt))
568
+ device = self._execution_device
569
+ do_classifier_free_guidance = guidance_scale > 1.0
570
+
571
+ # 3. Encode input prompt
572
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
573
+ prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt,
574
+ prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
575
+ lora_scale=cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None,
576
+ )
577
+ if do_classifier_free_guidance:
578
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
579
+
580
+ # 4. Prepare timesteps
581
+ timesteps = [(1. - i/num_inference_steps) * 1000. for i in range(num_inference_steps)]
582
+
583
+ # Convert PIL image to tensor
584
+ mask_image = mask_image.convert("L")
585
+ mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.unet.dtype)
586
+ mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask)
587
+ mask = (mask > 0.5)
588
+ mask = ~mask
589
+
590
+ # 4. Preprocess image
591
+ image = self.image_processor.preprocess(input_image).to(device=device, dtype=self.unet.dtype)
592
+ if inverseproblem:
593
+ image = image*mask
594
+ image = image.to(device=device, dtype=self.unet.dtype)
595
+ noisy_image = image.detach().clone()
596
+
597
+ latents = retrieve_latents(self.vae.encode(noisy_image), generator=generator) * self.vae.config.scaling_factor
598
+
599
+ # 5. Prepare latent variables
600
+ num_channels_latents = self.unet.config.in_channels
601
+ latents = self.prepare_latents(
602
+ batch_size * num_images_per_prompt, num_channels_latents, height, width,
603
+ prompt_embeds.dtype, device, generator, latents,
604
+ )
605
+
606
+ # 6. Prepare extra step kwargs
607
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
608
+
609
+ print(mask.shape)
610
+ h, w = latents.shape[2], latents.shape[3]
611
+ mask = TF.Resize((h, w))(mask.to(device))
612
+ mask = (~(mask > 0.1)).float()
613
+
614
+ # Slightly dilate the mask to increase coverage
615
+ # We do this to ensure that the VAE model does not have the adverse effect due to the compression
616
+ if inverseproblem:
617
+ print("Dilating the masks.")
618
+ kernel_size = 3 # Decreased from 3 to 2
619
+ kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device)
620
+ mask = torch.nn.functional.conv2d(
621
+ mask.unsqueeze(0),
622
+ kernel,
623
+ padding=kernel_size//2
624
+ ).squeeze(0)
625
+ mask = torch.clamp(mask, 0, 1)
626
+
627
+ mask = (mask > 0.1).float()
628
+
629
+ # Apply the mask to latents_copy
630
+ random_latents = self.prepare_latents(
631
+ batch_size * num_images_per_prompt, num_channels_latents, height, width,
632
+ prompt_embeds.dtype, device, generator
633
+ )
634
+
635
+ bool_mask = mask.bool().unsqueeze(0).expand_as(latents)
636
+ mask = ~bool_mask
637
+
638
+ masked_latents = (latents * mask).clone().detach()
639
+ if save_masked_image:
640
+ masked_image = self.vae.decode(masked_latents / self.vae.config.scaling_factor, return_dict=False)[0]
641
+ masked_image = self.image_processor.postprocess(masked_image, output_type="pil")[0]
642
+ masked_image_path = output_path.replace(".", "_ip_degraded.")
643
+ masked_image.save(masked_image_path)
644
+ print(f"Masked image saved to: {masked_image_path}")
645
+
646
+ latents = random_latents.clone().detach()
647
+
648
+ self.unet.eval()
649
+ self.vae.eval()
650
+
651
+ # Initialize timing and memory tracking if not already done
652
+ if not hasattr(self, 'avg_total_time'):
653
+ self.avg_total_time = 0
654
+ self.num_calls = 0
655
+ if not hasattr(self, 'max_memory'):
656
+ self.max_memory = 0
657
+
658
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
659
+ for i, t in enumerate(timesteps):
660
+ latents = self.perform_denoising_step(
661
+ latents, t, prompt_embeds, do_classifier_free_guidance, guidance_scale,
662
+ device, i, optimization_steps, learning_rate,
663
+ max_steps, timesteps, mask, masked_latents, noisy_image
664
+ )
665
+
666
+ if callback is not None and i % callback_steps == 0:
667
+ callback(i // getattr(self.scheduler, "order", 1), t, latents)
668
+
669
+ progress_bar.update()
670
+
671
+ # 10. Post-processing
672
+ image = self.post_process_image(latents, output_type)
673
+
674
+ # 11. Offload all models
675
+ self.maybe_free_model_hooks()
676
+
677
+ if not return_dict:
678
+ return (image, None)
679
+
680
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
681
+
682
+ def load_and_preprocess_image(self, image_path, custom_image_processor, device):
683
+ from diffusers.utils import load_image
684
+ img = load_image(image_path)
685
+ img = img.resize((512, 512))
686
+ return custom_image_processor(img).unsqueeze(0).to(device)
687
+
688
+ def perform_denoising_step(self, latents, t, prompt_embeds, do_classifier_free_guidance, guidance_scale,
689
+ device, step, optimization_steps, learning_rate,
690
+ max_steps, timesteps, mask, masked_latents, noisy_image):
691
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
692
+ vec_t = torch.ones((latent_model_input.shape[0],), device=latents.device) * t
693
+ v_pred = self.unet(latent_model_input, vec_t, encoder_hidden_states=prompt_embeds).sample
694
+
695
+ if do_classifier_free_guidance:
696
+ v_pred_neg, v_pred_text = v_pred.chunk(2)
697
+ v_pred = v_pred_neg + guidance_scale * (v_pred_text - v_pred_neg)
698
+
699
+ if step <= max_steps:
700
+ latents = self.optimize_latents(latents, v_pred, t,
701
+ device, optimization_steps, learning_rate, mask, masked_latents, noisy_image)
702
+
703
+
704
+ return latents + (1.0 / len(timesteps)) * v_pred
705
+
706
+ def optimize_latents(self, latents, v_pred, t, device, optimization_steps, learning_rate,
707
+ mask, masked_latents, noisy_image):
708
+ with torch.enable_grad():
709
+ latents = torch.autograd.Variable(latents, requires_grad=True)
710
+ optimizer = torch.optim.Adam([latents], lr=learning_rate)
711
+
712
+ for _ in range(optimization_steps):
713
+ latents_p = latents + t/1000 * v_pred
714
+ loss = (0.001*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
715
+
716
+ loss.backward()
717
+ optimizer.step()
718
+ optimizer.zero_grad()
719
+
720
+ return latents
721
+
722
+ def decode_latents(self, latents):
723
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
724
+ return self.image_processor.postprocess(image, output_type="pt")[0]
725
+
726
+ def post_process_image(self, latents, output_type):
727
+ if output_type == "latent":
728
+ return latents
729
+
730
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
731
+ do_denormalize = [True] * image.shape[0]
732
+ return self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ spaces
2
+ diffusers==0.31.0
3
+ gradio==5.6.0
4
+ numpy==2.1.3
5
+ Pillow==11.0.0
6
+ torch==2.1.2
7
+ torch_xla==2.5.1
8
+ torchvision==0.16.2
9
+ transformers==4.45.2
saved_results/20241129_210517/input.png ADDED
saved_results/20241129_210517/mask.png ADDED
saved_results/20241129_210517/output.png ADDED
saved_results/20241129_210517/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": "a cat",
3
+ "seed": 0,
4
+ "randomize_seed": true,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.1,
8
+ "optimization_steps": 1,
9
+ "inverseproblem": false
10
+ }
saved_results/20241129_211124/input.png ADDED
saved_results/20241129_211124/mask.png ADDED
saved_results/20241129_211124/output.png ADDED
saved_results/20241129_211124/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 0,
4
+ "randomize_seed": true,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.1,
8
+ "optimization_steps": 5,
9
+ "inverseproblem": false
10
+ }
saved_results/20241129_211142/input.png ADDED
saved_results/20241129_211142/mask.png ADDED
saved_results/20241129_211142/output.png ADDED
saved_results/20241129_211142/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 0,
4
+ "randomize_seed": true,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.1,
8
+ "optimization_steps": 5,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_211621/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_211621/mask.png ADDED
saved_results/20241129_211621/output.png ADDED
saved_results/20241129_211621/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 0,
4
+ "randomize_seed": true,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.1,
8
+ "optimization_steps": 5,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_211904/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_211904/mask.png ADDED
saved_results/20241129_211904/output.png ADDED
saved_results/20241129_211904/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 0,
4
+ "randomize_seed": true,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 5,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_212001/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212001/mask.png ADDED
saved_results/20241129_212001/output.png ADDED
saved_results/20241129_212001/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 52,
4
+ "randomize_seed": false,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 10,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_212022/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212022/mask.png ADDED
saved_results/20241129_212022/output.png ADDED
saved_results/20241129_212022/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 52,
4
+ "randomize_seed": false,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 10,
9
+ "inverseproblem": false
10
+ }
saved_results/20241129_212052/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212052/mask.png ADDED
saved_results/20241129_212052/output.png ADDED
saved_results/20241129_212052/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 52,
4
+ "randomize_seed": false,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 10,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_212110/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212110/mask.png ADDED
saved_results/20241129_212110/output.png ADDED
saved_results/20241129_212110/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 52,
4
+ "randomize_seed": false,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 10,
9
+ "inverseproblem": false
10
+ }
saved_results/20241129_212155/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212155/mask.png ADDED
saved_results/20241129_212155/output.png ADDED
saved_results/20241129_212155/parameters.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompt": " ",
3
+ "seed": 52,
4
+ "randomize_seed": false,
5
+ "num_inference_steps": 200,
6
+ "max_steps": 200,
7
+ "learning_rate": 0.02,
8
+ "optimization_steps": 10,
9
+ "inverseproblem": true
10
+ }
saved_results/20241129_212220/input.png ADDED

Git LFS Details

  • SHA256: 4ac27eecc91790ee401253a78d3aff8ca7fd1401b92a074cd81dc96f54449cc5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
saved_results/20241129_212220/mask.png ADDED
saved_results/20241129_212220/output.png ADDED