EnglishToucan / InferenceInterfaces /ControllableInterface.py
Flux9665's picture
update to current version
c255993
raw
history blame
3.05 kB
import os
import torch
from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface
from Modules.ControllabilityGAN.GAN import GanWrapper
from Utility.storage_config import MODELS_DIR
class ControllableInterface:
def __init__(self, gpu_id="cpu", available_artificial_voices=1000):
if gpu_id == "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ""
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}"
self.device = "cuda" if gpu_id != "cpu" else "cpu"
self.model = ToucanTTSInterface(device=self.device, tts_model_path="Meta")
self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device=self.device)
self.generated_speaker_embeds = list()
self.available_artificial_voices = available_artificial_voices
self.current_language = ""
self.current_accent = ""
def read(self,
prompt,
reference_audio,
voice_seed,
prosody_creativity,
duration_scaling_factor,
pause_duration_scaling_factor,
pitch_variance_scale,
energy_variance_scale,
emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6,
loudness_in_db
):
if reference_audio is None:
self.wgan.set_latent(voice_seed)
controllability_vector = torch.tensor([emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6], dtype=torch.float32)
embedding = self.wgan.modify_embed(controllability_vector)
self.model.set_utterance_embedding(embedding=embedding)
else:
self.model.set_utterance_embedding(reference_audio)
phones = self.model.text2phone.get_phone_string(prompt)
if len(phones) > 1800:
prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
print(prompt + "\n\n")
wav, sr, fig = self.model(prompt,
input_is_phones=False,
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
pause_duration_scaling_factor=pause_duration_scaling_factor,
return_plot_as_filepath=True,
prosody_creativity=prosody_creativity,
loudness_in_db=loudness_in_db)
return sr, wav, fig