LlamaGen / serve /gpt_model.py
ShoufaChen's picture
vllm
4bfb360
raw
history blame
No virus
14.9 kB
from dataclasses import dataclass
from typing import Optional, List
import torch
import torch.nn as nn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import SamplerOutput
from vllm.attention import AttentionMetadata
from vllm.attention import Attention as pagedAttention
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from serve.sampler import Sampler
def find_multiple(n: int, k: int):
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class ModelArgs:
dim: int = 4096
n_layer: int = 32
n_head: int = 32
n_kv_head: Optional[int] = None
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
rope_base: float = 10000
norm_eps: float = 1e-5
initializer_range: float = 0.02
num_classes: int = 1000
class_dropout_prob: float = 0.1
model_type: str = 'c2i'
cfg_scale: float = 4.0
vocab_size: int = 16384
cls_token_num: int = 1
block_size: int = 256
max_batch_size: int = 32
max_seq_len: int = 2048
#################################################################################
# Embedding Layers for Class Labels #
#################################################################################
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
# def token_drop(self, labels, force_drop_ids=None):
# """
# Drops labels to enable classifier-free guidance.
# """
# if force_drop_ids is None:
# drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
# else:
# drop_ids = force_drop_ids == 1
# labels = torch.where(drop_ids, self.num_classes, labels)
# return labels
# def forward(self, labels, train, force_drop_ids=None):
def forward(self, labels):
# use_dropout = self.dropout_prob > 0
# if (train and use_dropout) or (force_drop_ids is not None):
# labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# GPT Model #
#################################################################################
# class RMSNorm(torch.nn.Module):
# def __init__(self, dim: int, eps: float = 1e-5):
# super().__init__()
# self.eps = eps
# self.weight = nn.Parameter(torch.ones(dim))
# def _norm(self, x):
# return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
# def forward(self, x):
# output = self._norm(x.float()).type_as(x)
# return output * self.weight
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
hidden_dim = 4 * config.dim
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if config.ffn_dim_multiplier is not None:
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
# self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
# self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w_merged = nn.Linear(config.dim, hidden_dim * 2, bias=False)
self.act_fn = SiluAndMul()
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
# self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
# def forward(self, x):
# return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
def forward(self, x):
x = self.w_merged(x)
x = self.act_fn(x)
x = self.w2(x)
# return self.ffn_dropout(x)
return x
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.head_dim = config.dim // config.n_head
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
# pagedAttention
self.attn = pagedAttention(self.n_head,
self.head_dim,
self.head_dim**-0.5,
num_kv_heads=self.n_kv_head,
)
# 2d rotary pos embedding
grid_size = int(config.block_size ** 0.5)
assert grid_size * grid_size == config.block_size
freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num)
self.register_buffer('freqs_cis', freqs_cis)
def forward(
self,
x: torch.Tensor,
positions: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
):
kv_size = self.n_kv_head * self.head_dim
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim)
xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim)
freqs_cis = self.freqs_cis[positions].unsqueeze(1)
xq = apply_rotary_emb_bs(xq, freqs_cis)
xk = apply_rotary_emb_bs(xk, freqs_cis)
xq = xq.flatten(1)
xk = xk.flatten(1)
output = self.attn(xq, xk, xv, kv_cache, attn_metadata)
output = self.wo(output)
return output
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata):
h = x + self.attention(self.attention_norm(x), positions, kv_cache, attn_metadata)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.n_layer = config.n_layer
self.block_size = config.block_size
self.num_classes = config.num_classes
self.model_type = config.model_type
self.cls_token_num = config.cls_token_num
self.cfg_scale = config.cfg_scale
if self.model_type == 'c2i':
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
else:
raise Exception("vllm only supports c2i now, please check model type")
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(config.n_layer):
self.layers.append(TransformerBlock(config))
# output layer
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler(config.cfg_scale)
def forward(
self,
input_ids: torch.Tensor=None,
positions: torch.Tensor=None,
kv_caches: List[torch.Tensor]=None,
attn_metadata: AttentionMetadata=None,
):
# if positions.max() == 0: # prefill in inference
# token_embeddings = self.cls_embedding(input_ids)
# else: # decode_n_tokens(kv cache) in inference
# token_embeddings = self.tok_embeddings(input_ids)
cond_ids = torch.clamp(input_ids, max=self.num_classes)
token_embeddings = self.cls_embedding(cond_ids) * (positions.max() == 0) + \
self.tok_embeddings(input_ids) * (positions.max() != 0)
hh = token_embeddings
# transformer blocks
for layer_id, layer in enumerate(self.layers):
hh = layer(hh, positions, kv_caches[layer_id], attn_metadata)
# output layers
hh = self.norm(hh)
return hh
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.output.weight, hidden_states, sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def custom_load_state_dict(self, model_weights):
model_weights = model_weights.copy()
for layer_id in range(len(self.layers)):
branch1 = f'layers.{layer_id}.feed_forward.w1.weight'
branch3 = f'layers.{layer_id}.feed_forward.w3.weight'
branch_merged = f'layers.{layer_id}.feed_forward.w_merged.weight'
model_weights[branch_merged] = torch.cat(
[model_weights[branch1], model_weights[branch3]], dim=0
)
model_weights.pop(branch1)
model_weights.pop(branch3)
if 'freqs_cis' in model_weights:
model_weights.pop('freqs_cis')
self.load_state_dict(model_weights, strict=False)
#################################################################################
# Rotary Positional Embedding Functions #
#################################################################################
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
return cond_cache
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
# split the dimension into half, one for x and one for y
half_dim = n_elem // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
t = torch.arange(grid_size, device=freqs.device)
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
freqs_grid = torch.concat([
freqs[:, None, :].expand(-1, grid_size, -1),
freqs[None, :, :].expand(grid_size, -1, -1),
], dim=-1) # (grid_size, grid_size, head_dim // 2)
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
cache = cache_grid.flatten(0, 1)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
return cond_cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
def apply_rotary_emb_bs(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(xshaped.size(0), xshaped.size(1), 1, xshaped.size(3), 2) # (bs, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
#################################################################################
# GPT Configs #
#################################################################################
### text-conditional
def GPT_7B(**kwargs):
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
def GPT_3B(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
def GPT_1B(**kwargs):
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
### class-conditional
def GPT_XXXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
def GPT_XXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
def GPT_XL(**kwargs):
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
def GPT_L(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
def GPT_B(**kwargs):
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
GPT_models = {
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
}