submission-form / app.py
lewtun's picture
lewtun HF staff
Refactor to mathc new AutoTrain API
1b95f45
import json
import os
import shutil
import uuid
from datetime import datetime
from pathlib import Path
import jsonlines
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import Repository, cached_download, hf_hub_url
from utils import http_get, http_post, validate_json
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
LOCAL_REPO = "submission_repo"
LOGS_REPO = "submission-logs"
# TODO
# 1. Add check that fields are nested under `tasks` field correctly
# 2. Add check that names of tasks and datasets are valid
MARKDOWN = """---
benchmark: gem
type: prediction
submission_name: {submission_name}
tags:
- evaluation
- benchmark
---
# GEM Submission
Submission name: {submission_name}
"""
def generate_dataset_card(submission_name):
"""
Generate dataset card for the submission
"""
markdown = MARKDOWN.format(
submission_name=submission_name,
)
with open(os.path.join(LOCAL_REPO, "README.md"), "w") as f:
f.write(markdown)
def load_json(path):
with open(path, "r") as f:
return json.load(f)
def get_submission_names():
"""Download all submission names.
The GEM frontend requires the submission names to be unique, so here we
download all submission names and use them as a check against the user
submissions.
"""
scores_url = hf_hub_url("GEM-submissions/submission-scores", "scores.json", repo_type="dataset")
scores_filepath = cached_download(scores_url, force_download=True)
scores_data = load_json(scores_filepath)
return [score["submission_name"] for score in scores_data]
#######
# APP #
#######
st.title("GEM Submissions")
st.markdown(
"""
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark
environment for Natural Language Generation with a focus on its Evaluation, both
through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across many NLG tasks across languages.
- audit data and models and present results via data cards and model robustness
reports.
- develop standards for evaluation of generated text using both automated and
human metrics.
Use this page to submit your system's predictions to the benchmark.
"""
)
with st.form(key="form"):
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
submission_errors = 0
uploaded_file = st.file_uploader("Upload submission file", type=["json"])
if uploaded_file:
data = str(uploaded_file.read(), "utf-8")
json_data = json.loads(data)
submission_names = get_submission_names()
submission_name = json_data["submission_name"]
if submission_name in submission_names:
st.error(f"πŸ™ˆ Submission name `{submission_name}` is already taken. Please rename your submission.")
submission_errors += 1
else:
is_valid, message = validate_json(json_data)
if is_valid:
st.success(message)
else:
st.error(message)
submission_errors += 1
with st.expander("Submission format"):
st.markdown(
"""
Please follow this JSON format for your `submission.json` file:
```json
{
"submission_name": "An identifying name of your system",
"param_count": 123, # The number of parameters your system has.
"description": "An optional brief description of the system that will be shown on the results page",
"tasks":
{
"dataset_identifier": {
"values": ["output-0", "output-1", "..."], # A list of system outputs.
"keys": ["gem_id-0", "gem_id-1", ...] # A list of GEM IDs.
}
}
}
```
Here, `dataset_identifier` is the identifier of the dataset followed by
an identifier of the set the outputs were created from, for example
`_validation` or `_test`. For example, the `mlsum_de` test set has the
identifier `mlsum_de_test`. The `keys` field is needed to avoid
accidental shuffling that will impact your metrics. Simply add a list of
IDs from the `gem_id` column of each evaluation dataset in the same
order as your values. Please see the sample submission below:
"""
)
with open("sample-submission.json", "r") as f:
example_submission = json.load(f)
st.json(example_submission)
user_name = st.text_input("Enter your πŸ€— Hub username", help="This field is required to track your submission and cannot be empty")
submit_button = st.form_submit_button("Make Submission")
if submit_button and submission_errors == 0:
with st.spinner("⏳ Preparing submission for evaluation ..."):
submission_name = json_data["submission_name"]
submission_name_formatted = submission_name.lower().replace(" ", "-").replace("/", "-")
submission_time = str(int(datetime.now().timestamp()))
# Create submission dataset under benchmarks ORG
submission_repo_id = f"GEM-submissions/{user_name}__{submission_name_formatted}__{submission_time}"
dataset_repo_url = f"https://huggingface.co/datasets/{submission_repo_id}"
repo = Repository(
local_dir=LOCAL_REPO,
clone_from=dataset_repo_url,
repo_type="dataset",
private=False,
use_auth_token=HF_TOKEN,
)
generate_dataset_card(submission_name)
with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f:
json.dump(json_data, f)
# TODO: add informative commit msg
commit_url = repo.push_to_hub()
if commit_url is not None:
commit_sha = commit_url.split("/")[-1]
else:
commit_sha = repo.git_head_commit_url().split("/")[-1]
submission_id = submission_name + "__" + str(uuid.uuid4())[:6] + "__" + submission_time
# Define AutoTrain payload
project_config = {}
# Need a dummy dataset to use the dataset loader in AutoTrain
project_config["dataset_name"] = "lewtun/imdb-dummy"
project_config["dataset_config"] = "lewtun--imdb-dummy"
project_config["dataset_split"] = "train"
project_config["col_mapping"] = {"text": "text", "label": "target"}
# Specify benchmark parameters
project_config["model"] = "gem"
project_config["dataset"] = "GEM/references"
project_config["submission_dataset"] = submission_repo_id
project_id = str(uuid.uuid4()).split("-")[0]
project_payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": f"benchmark-gem-{project_id}",
"task": 1,
"config": {
"language": "en",
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"benchmark": {
"dataset": project_config["dataset"],
"model": project_config["model"],
"submission_dataset": project_config["submission_dataset"],
},
},
}
project_json_resp = http_post(
path="/projects/create", payload=project_payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
print(f"Project creation: {project_json_resp}")
# Upload data
payload = {
"split": 4,
"col_mapping": project_config["col_mapping"],
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{project_config['dataset_name']}",
payload=payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={
"type": "dataset",
"config_name": project_config["dataset_config"],
"split_name": project_config["dataset_split"],
},
).json()
print(f"Dataset creation: {data_json_resp}")
# Run training
train_json_resp = http_get(
path=f"/projects/{project_json_resp['id']}/data/start_process",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(f"Training job response: {train_json_resp}")
logs_repo_url = f"https://huggingface.co/datasets/GEM-submissions/{LOGS_REPO}"
logs_repo = Repository(
local_dir=LOGS_REPO,
clone_from=logs_repo_url,
repo_type="dataset",
private=True,
use_auth_token=HF_TOKEN,
)
evaluation_log = {}
evaluation_log["payload"] = project_payload
evaluation_log["project_creation_response"] = project_json_resp
evaluation_log["dataset_creation_response"] = data_json_resp
evaluation_log["autotrain_job_response"] = train_json_resp
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r:
lines = []
for obj in r:
lines.append(obj)
lines.append(evaluation_log)
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer:
for job in lines:
writer.write(job)
logs_repo.push_to_hub(commit_message=f"Submission with job ID {project_json_resp['id']}")
if train_json_resp["success"] == 1:
st.success(
f"βœ… Submission {submission_name} was successfully submitted for evaluation!"
)
st.markdown(
f"""
Evaluation can take up to 1 hour to complete, so grab a β˜• or 🍡 while you wait:
* πŸ“Š Click [here](https://huggingface.co/spaces/GEM/results) to view the results from your submission
* πŸ’Ύ Click [here]({dataset_repo_url}) to view your submission file on the Hugging Face Hub
Please [contact the organisers](mailto:gehrmann@google.com) if you would like your submission and/or evaluation scores deleted.
"""
)
else:
st.error(
"πŸ™ˆ Oh noes, there was an error submitting your submission! Please [contact the organisers](mailto:gehrmann@google.com)"
)
# # Flush local repos
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
shutil.rmtree(LOGS_REPO, ignore_errors=True)
with st.expander("Download all submissions and scores"):
st.markdown("Click the button below if you'd like to download all the submissions and evaluations from GEM:")
outputs_url = hf_hub_url(
"GEM-submissions/v2-outputs-and-scores", "gem-v2-outputs-and-scores.zip", repo_type="dataset"
)
outputs_filepath = cached_download(outputs_url)
with open(outputs_filepath, "rb") as f:
btn = st.download_button(label="Download submissions and scores", data=f, file_name="outputs-and-scores.zip")