File size: 7,909 Bytes
89e696a
36f3034
 
00825cb
 
89e696a
449983f
2c1bfb4
 
449983f
dfabd70
eca3864
ea19f03
f637681
6160f84
ea19f03
6160f84
449983f
f637681
45bb8a5
449983f
d0f6704
 
449983f
dfabd70
f0e35ad
dfabd70
 
04f10a7
ea19f03
00825cb
 
 
 
449983f
00825cb
04f10a7
 
 
 
 
 
 
 
ea19f03
 
04f10a7
ea19f03
 
 
04f10a7
ea19f03
00825cb
dfabd70
 
ea19f03
00825cb
ea19f03
00825cb
dfabd70
00825cb
 
dfabd70
00825cb
dfabd70
ea19f03
00825cb
 
 
449983f
2c1bfb4
 
 
 
 
 
449983f
 
2c1bfb4
449983f
b6148e0
ab9c8b0
 
36f3034
449983f
ab9c8b0
36f3034
04f10a7
36f3034
d0f6704
 
 
 
 
 
 
45bb8a5
 
d0f6704
ea19f03
45bb8a5
ea19f03
45bb8a5
f637681
04f10a7
449983f
5eb4c6b
 
 
 
04f10a7
5eb4c6b
 
 
 
 
 
 
 
 
04f10a7
11ebafd
04f10a7
 
ea19f03
04f10a7
 
 
 
 
 
 
 
ea19f03
 
416d73b
5eb4c6b
 
 
 
 
45bb8a5
449983f
f637681
 
 
 
45bb8a5
f637681
 
 
 
 
45bb8a5
 
accd0d7
449983f
ab9c8b0
36f3034
 
 
 
 
d0f6704
 
 
 
 
 
 
45bb8a5
 
d0f6704
f637681
45bb8a5
 
 
 
 
04f10a7
45bb8a5
 
00825cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np

# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")

# Load CSV files
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')

nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)

# Ignore the last two columns
df = df.iloc[:, :-2]

# Ensure customer code is a string
df['CLIENTE'] = df['CLIENTE'].astype(str)

# Function to get supplier name
def get_supplier_name(code):
    name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
    return name[0] if len(name) > 0 else code

# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
    N = len(categories)
    angles = [n / float(N) * 2 * np.pi for n in range(N)]
    angles += angles[:1]
    
    fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
    
    # Apply square root transformation
    sqrt_values = np.sqrt(values)
    sqrt_amounts = np.sqrt(amounts)
    
    max_sqrt_value = max(sqrt_values)
    normalized_values = [v / max_sqrt_value for v in sqrt_values]
    total_sqrt_amount = sum(sqrt_amounts)
    normalized_amounts = [a / total_sqrt_amount for a in sqrt_amounts]
    
    normalized_values += normalized_values[:1]
    ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
    ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
    
    normalized_amounts += normalized_amounts[:1]
    ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
    ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
    
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(categories, size=8, wrap=True)
    ax.set_ylim(0, max(max(normalized_values), max(normalized_amounts)) * 1.1)
    
    circles = np.linspace(0, 1, 5)
    for circle in circles:
        ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
    
    ax.set_yticklabels([])
    ax.spines['polar'].set_visible(False)
    
    plt.title(title, size=16, y=1.1)
    plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
    
    return fig

# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
    This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history. 
    Use the tools below to dive deeper into your customer data.
""")

# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Customer Recommendations"])

# Home Page
if page == "":
    st.markdown("## Welcome to the Customer Insights App")
    st.write("Use the dropdown menu to navigate between the different sections.")

# Customer Analysis Page
elif page == "Customer Analysis":
    st.title("Customer Analysis")
    st.markdown("Use the tools below to explore your customer data.")

    partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code", customer_list)

    if customer_code:
        customer_data = df[df["CLIENTE"] == customer_code]
        customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == customer_code]

        if not customer_data.empty and not customer_euros.empty:
            st.write(f"### Analysis for Customer {customer_code}")

            all_manufacturers = customer_data.iloc[:, 1:].T[customer_data.iloc[:, 1:].T[customer_data.index[0]] > 0]
            
            # Convert to numeric and handle any non-numeric values
            all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
            customer_euros = customer_euros.apply(pd.to_numeric, errors='coerce')

            top_units = all_manufacturers.sort_values(by=customer_data.index[0], ascending=False).head(10)
            
            # Ensure we're working with numeric data for sorting
            numeric_euros = customer_euros.select_dtypes(include=[np.number])
            if not numeric_euros.empty:
                top_sales = numeric_euros.iloc[0].sort_values(ascending=False).head(10)
            else:
                st.warning("No numeric sales data available for this customer.")
                top_sales = pd.Series()

            combined_top = pd.concat([top_units, top_sales]).index.unique()

            values = []
            manufacturers = []
            amounts = []

            for m in combined_top:
                if m in all_manufacturers.index:
                    values.append(all_manufacturers[m])
                    manufacturers.append(get_supplier_name(m))
                    amounts.append(customer_euros[m].values[0] if m in customer_euros.columns else 0)

            st.write(f"### Results for top {len(manufacturers)} manufacturers (balanced by units and sales):")
            for manufacturer, value, amount in zip(manufacturers, values, amounts):
                st.write(f"{manufacturer} = {value:.4f} units, €{amount:.2f}")

            if manufacturers:  # Only create the chart if we have data
                fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
                st.pyplot(fig)
            else:
                st.warning("No data available to create the radar chart.")

            # Customer sales 2021-2024 (if data exists)
            if 'VENTA_2021' in df.columns and 'VENTA_2022' in df.columns and 'VENTA_2023' in df.columns and 'VENTA_2024' in df.columns:
                years = ['2021', '2022', '2023', '2024']
                sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024']
                customer_sales = customer_data[sales_columns].values[0]

                fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
                fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
                st.plotly_chart(fig_sales)
            else:
                st.warning("Sales data for 2021-2024 not available.")
        else:
            st.warning(f"No data found for customer {customer_code}. Please check the code.")

# Customer Recommendations Page
elif page == "Customer Recommendations":
    st.title("Customer Recommendations")
    st.markdown("""
        Get tailored recommendations for your customers based on their purchasing history.
    """)

    partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code for Recommendations", customer_list)

    if customer_code:
        customer_data = df[df["CLIENTE"] == customer_code]

        if not customer_data.empty:
            st.write(f"### Purchase History for Customer {customer_code}")
            st.write(customer_data)

            st.write(f"### Recommended Products for Customer {customer_code}")
            # Placeholder for recommendation logic
            st.write("Product A, Product B, Product C")
        else:
            st.warning(f"No data found for customer {customer_code}. Please check the code.")