File size: 30,133 Bytes
89e696a
36f3034
 
00825cb
 
be51ad8
6e09d82
 
89e696a
449983f
2c1bfb4
 
02c25ad
dfabd70
eca3864
ea19f03
801e1c6
02c25ad
f637681
af4b90c
 
6160f84
ea19f03
02c25ad
6e09d82
 
 
6160f84
af4b90c
7a47c88
 
 
 
af4b90c
7a47c88
af4b90c
7a47c88
af4b90c
f637681
45bb8a5
449983f
dfabd70
af4b90c
f0e35ad
dfabd70
 
04f10a7
ea19f03
00825cb
 
 
 
449983f
00825cb
04f10a7
 
 
 
 
 
83a6565
 
 
 
 
ea19f03
 
04f10a7
ea19f03
 
 
04f10a7
ea19f03
00825cb
dfabd70
 
83a6565
00825cb
ea19f03
00825cb
dfabd70
00825cb
 
dfabd70
00825cb
dfabd70
ea19f03
00825cb
 
 
449983f
2c1bfb4
 
 
 
 
 
449983f
6e09d82
2c1bfb4
449983f
b6148e0
ab9c8b0
 
36f3034
67f8e33
9f5e05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9c8b0
36f3034
04f10a7
36f3034
d0f6704
 
 
 
 
 
 
45bb8a5
36df00a
 
4508fcb
 
45bb8a5
4508fcb
 
 
801e1c6
ddf19f6
801e1c6
 
 
 
9f5e05c
 
 
 
 
 
 
4508fcb
801e1c6
0b0c0f3
 
 
 
9f5e05c
 
 
57e8206
4508fcb
0b0c0f3
 
 
 
 
 
 
9f5e05c
 
 
801e1c6
 
4508fcb
 
9f5e05c
 
 
4508fcb
ddf19f6
4508fcb
9f5e05c
 
 
 
 
2cd23d8
 
 
 
9f5e05c
 
 
2cd23d8
 
801e1c6
4508fcb
801e1c6
2cd23d8
9f5e05c
 
 
2cd23d8
801e1c6
2cd23d8
 
 
 
9f5e05c
 
 
2cd23d8
4508fcb
 
 
 
 
 
 
 
 
 
 
801e1c6
ddf19f6
 
801e1c6
 
 
 
 
 
 
0cedfeb
801e1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cedfeb
801e1c6
 
 
 
 
 
 
 
 
 
36df00a
801e1c6
f637681
36df00a
45bb8a5
36df00a
accd0d7
9f5e05c
449983f
6e09d82
 
36f3034
6e09d82
 
 
 
 
d0f6704
 
 
 
 
 
36df00a
45bb8a5
36df00a
6e09d82
 
 
 
f8ab51b
6e09d82
 
 
f8ab51b
6e09d82
 
f8ab51b
6e09d82
 
f8ab51b
6e09d82
 
 
 
 
 
 
 
 
36df00a
 
 
 
 
 
 
6e09d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36df00a
6e09d82
 
36df00a
 
 
 
 
 
 
 
6e09d82
36df00a
6e09d82
 
16acf43
6e09d82
 
 
 
 
 
 
 
36df00a
3ac8646
 
 
 
 
 
 
 
 
 
6e09d82
36df00a
3ac8646
 
36df00a
3ac8646
36df00a
 
 
 
 
 
 
 
 
3ac8646
36df00a
 
3ac8646
 
 
 
 
36df00a
3ac8646
 
 
 
36df00a
 
3ac8646
 
6e09d82
3ac8646
6e09d82
 
 
 
 
 
 
 
 
02c25ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
import lightgbm as lgb
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")

# Load CSV files at the top, only once
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
customer_clusters = pd.read_csv('predicts/customer_clusters.csv')  # Load the customer clusters here

# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str)  # Ensure customer IDs are strings
fieles_df = pd.read_csv("clientes_relevantes.csv")
cestas = pd.read_csv("cestas.csv")
productos = pd.read_csv("productos.csv")

# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
    if col != 'CLIENTE':
        euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')

# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
    st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")

# Ignore the last two columns of df
df = df.iloc[:, :-2]

# Function to get supplier name
def get_supplier_name(code):
    code = str(code)  # Ensure code is a string
    name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
    return name[0] if len(name) > 0 else code

# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
    N = len(categories)
    angles = [n / float(N) * 2 * np.pi for n in range(N)]
    angles += angles[:1]
    
    fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
    
    # Apply square root transformation
    sqrt_values = np.sqrt(values)
    sqrt_amounts = np.sqrt(amounts)
    
    max_sqrt_value = max(sqrt_values)
    normalized_values = [v / max_sqrt_value for v in sqrt_values]
    
    # Adjust scaling for spend values
    max_sqrt_amount = max(sqrt_amounts)
    scaling_factor = 0.7  # Adjust this value to control how much the spend values are scaled up
    normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
    
    normalized_values += normalized_values[:1]
    ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
    ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
    
    normalized_amounts += normalized_amounts[:1]
    ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
    ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
    
    ax.set_xticks(angles[:-1])
    ax.set_xticklabels(categories, size=8, wrap=True)
    ax.set_ylim(0, 1)
    
    circles = np.linspace(0, 1, 5)
    for circle in circles:
        ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
    
    ax.set_yticklabels([])
    ax.spines['polar'].set_visible(False)
    
    plt.title(title, size=16, y=1.1)
    plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
    
    return fig

# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
    This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history. 
    Use the tools below to dive deeper into your customer data.
""")

# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])

# Home Page
if page == "":
    st.markdown("## Welcome to the Customer Insights App")
    st.write("Use the dropdown menu to navigate between the different sections.")

# Customer Analysis Page
# elif page == "Customer Analysis":
#     st.title("Customer Analysis")
#     st.markdown("Use the tools below to explore your customer data.")

#     partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
#     if partial_code:
#         filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
#     else:
#         filtered_customers = df
#     customer_list = filtered_customers['CLIENTE'].unique()
#     customer_code = st.selectbox("Select Customer Code", customer_list)

#     if st.button("Calcular"):
#         if customer_code:
#             # Find Customer's Cluster
#             customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]

#             if not customer_match.empty:
#                 cluster = customer_match['cluster_id'].values[0]
#                 st.write(f"Customer {customer_code} belongs to cluster {cluster}")

#                 # Load the Corresponding Model
#                 model_path = f'models/modelo_cluster_{cluster}.txt'
#                 gbm = lgb.Booster(model_file=model_path)
#                 st.write(f"Loaded model for cluster {cluster}")

#                 # Load X_predict for that cluster
#                 X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')

#                 # Filter for the specific customer
#                 X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]

#                 if not X_cliente.empty:
#                     # Prepare data for prediction
#                     features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
                    
#                     # Make Prediction for the selected customer
#                     y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
                    
#                     # Reassemble the results
#                     results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
#                     results['ventas_predichas'] = y_pred
                    
#                     st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")

#                     # Load actual data
#                     df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
#                     actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
                    
#                     if not actual_sales.empty:
#                         results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']], 
#                                                 on=['cliente_id', 'marca_id_encoded', 'fecha_mes'], 
#                                                 how='left')
#                         results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
                        
#                         # Calculate metrics only for non-null actual sales
#                         valid_results = results.dropna(subset=['ventas_reales'])
#                         if not valid_results.empty:
#                             mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
#                             mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
#                             rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))

#                             st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
#                             st.write(f"MAE: {mae:.2f}")
#                             st.write(f"MAPE: {mape:.2f}%")
#                             st.write(f"RMSE: {rmse:.2f}")

#                         # Analysis of results
#                         threshold_good = 100  # You may want to adjust this threshold
#                         if mae < threshold_good:
#                             st.success(f"Customer {customer_code} is performing well based on the predictions.")
#                         else:
#                             st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
#                     else:
#                         st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")

#                     # Show the radar chart
#                     all_manufacturers = customer_data.iloc[:, 1:].T  # Exclude CLIENTE column
#                     all_manufacturers.index = all_manufacturers.index.astype(str)

#                     sales_data = customer_euros.iloc[:, 1:].T  # Exclude CLIENTE column
#                     sales_data.index = sales_data.index.astype(str)

#                     sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
#                     sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')

#                     top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
#                     top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
#                     combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
#                     combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]

#                     combined_data = pd.DataFrame({
#                         'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
#                         'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
#                     }).fillna(0)

#                     combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
#                     non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]

#                     if len(non_zero_manufacturers) < 3:
#                         zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
#                         manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
#                     else:
#                         manufacturers_to_show = non_zero_manufacturers

#                     values = manufacturers_to_show['units'].tolist()
#                     amounts = manufacturers_to_show['sales'].tolist()
#                     manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]

#                     st.write(f"### Results for top {len(manufacturers)} manufacturers:")
#                     for manufacturer, value, amount in zip(manufacturers, values, amounts):
#                         st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")

#                     if manufacturers:
#                         fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
#                         st.pyplot(fig)
#                     else:
#                         st.warning("No data available to create the radar chart.")

#                     # Show sales over the years graph
#                     sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
#                     if all(col in ventas_clientes.columns for col in sales_columns):
#                         years = ['2021', '2022', '2023']
#                         customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]

#                         fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
#                         fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
#                         st.plotly_chart(fig_sales)
#                     else:
#                         st.warning("Sales data for 2021-2023 not available.")
#                 else:
#                     st.warning(f"No prediction data found for customer {customer_code}.")
#             else:
#                 st.warning(f"No data found for customer {customer_code}. Please check the code.")
#         else:
#             st.warning("Please select a customer.")

elif page == "Customer Analysis":
    st.title("Customer Analysis")
    st.markdown("Use the tools below to explore your customer data.")

    partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code", customer_list)

    if st.button("Calcular"):
        if customer_code:
            # Find Customer's Cluster
            customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]

            if not customer_match.empty:
                cluster = customer_match['cluster_id'].values[0]
                st.write(f"Customer {customer_code} belongs to cluster {cluster}")

                # Load the Corresponding Model
                model_path = f'models/modelo_cluster_{cluster}.txt'
                gbm = lgb.Booster(model_file=model_path)
                st.write(f"Loaded model for cluster {cluster}")

                # Inspect the model
                st.write("### Model Information:")
                st.write(f"Number of trees: {gbm.num_trees()}")
                st.write(f"Number of features: {gbm.num_feature()}")
                st.write("Feature names:")
                st.write(gbm.feature_name())

                # Load X_predict for that cluster
                X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
                
                # Convert cliente_id to string
                X_predict_cluster['cliente_id'] = X_predict_cluster['cliente_id'].astype(str)
                
                st.write("### X_predict_cluster DataFrame:")
                st.write(X_predict_cluster.head())
                st.write(f"Shape: {X_predict_cluster.shape}")

                # Filter for the specific customer
                customer_code_str = str(customer_code)
                X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code_str]
                
                # Add debug statements
                st.write(f"Unique customer IDs in X_predict_cluster: {X_predict_cluster['cliente_id'].unique()}")
                st.write(f"Customer code we're looking for: {customer_code_str}")

                st.write("### X_cliente DataFrame:")
                st.write(X_cliente.head())
                st.write(f"Shape: {X_cliente.shape}")

                if not X_cliente.empty:
                    # Prepare data for prediction
                    features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
                    st.write("### Features for Prediction:")
                    st.write(features_for_prediction.head())
                    st.write(f"Shape: {features_for_prediction.shape}")
                    
                    # Make Prediction for the selected customer
                    y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
                    st.write("### Prediction Results:")
                    st.write(f"Type of y_pred: {type(y_pred)}")
                    st.write(f"Shape of y_pred: {y_pred.shape}")
                    st.write("First few predictions:")
                    st.write(y_pred[:5])
                    
                    # Reassemble the results
                    results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
                    results['ventas_predichas'] = y_pred
                    st.write("### Results DataFrame:")
                    st.write(results.head())
                    st.write(f"Shape: {results.shape}")
                    
                    st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")

                    # Load actual data
                    df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
                    actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
                    st.write("### Actual Sales DataFrame:")
                    st.write(actual_sales.head())
                    st.write(f"Shape: {actual_sales.shape}")
                    
                    if not actual_sales.empty:
                        results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']], 
                                                on=['cliente_id', 'marca_id_encoded', 'fecha_mes'], 
                                                how='left')
                        results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
                        st.write("### Final Results DataFrame:")
                        st.write(results.head())
                        st.write(f"Shape: {results.shape}")
                        
                        # Calculate metrics only for non-null actual sales
                        valid_results = results.dropna(subset=['ventas_reales'])
                        if not valid_results.empty:
                            mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
                            mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
                            rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))

                            st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
                            st.write(f"MAE: {mae:.2f}")
                            st.write(f"MAPE: {mape:.2f}%")
                            st.write(f"RMSE: {rmse:.2f}")

                        # Analysis of results
                        threshold_good = 100  # You may want to adjust this threshold
                        if mae < threshold_good:
                            st.success(f"Customer {customer_code} is performing well based on the predictions.")
                        else:
                            st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
                    else:
                        st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")

                    # Show the radar chart
                    all_manufacturers = customer_data.iloc[:, 1:].T  # Exclude CLIENTE column
                    all_manufacturers.index = all_manufacturers.index.astype(str)

                    sales_data = customer_euros.iloc[:, 1:].T  # Exclude CLIENTE column
                    sales_data.index = sales_data.index.astype(str)

                    sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
                    sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')

                    top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
                    top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
                    combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
                    combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]

                    combined_data = pd.DataFrame({
                        'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
                        'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
                    }).fillna(0)

                    combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
                    non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]

                    if len(non_zero_manufacturers) < 3:
                        zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
                        manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
                    else:
                        manufacturers_to_show = non_zero_manufacturers

                    values = manufacturers_to_show['units'].tolist()
                    amounts = manufacturers_to_show['sales'].tolist()
                    manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]

                    st.write(f"### Results for top {len(manufacturers)} manufacturers:")
                    for manufacturer, value, amount in zip(manufacturers, values, amounts):
                        st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")

                    if manufacturers:
                        fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
                        st.pyplot(fig)
                    else:
                        st.warning("No data available to create the radar chart.")

                    # Show sales over the years graph
                    sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
                    if all(col in ventas_clientes.columns for col in sales_columns):
                        years = ['2021', '2022', '2023']
                        customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]

                        fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
                        fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
                        st.plotly_chart(fig_sales)
                    else:
                        st.warning("Sales data for 2021-2023 not available.")
                else:
                    st.warning(f"No prediction data found for customer {customer_code}.")
            else:
                st.warning(f"No data found for customer {customer_code}. Please check the code.")
        else:
            st.warning("Please select a customer.")


# Customer Recommendations Page
elif page == "Articles Recommendations":
    st.title("Articles Recommendations")

    st.markdown("""
        Get tailored recommendations for your customers based on their basket.
    """)

    # Campo input para cliente
    partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
    if partial_code:
        filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
    else:
        filtered_customers = df
    customer_list = filtered_customers['CLIENTE'].unique()
    customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))

    # Definición de la función recomienda
    def recomienda(new_basket):
        # Calcular la matriz TF-IDF
        tfidf = TfidfVectorizer()
        tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])

        # Convertir la nueva cesta en formato TF-IDF
        new_basket_str = ' '.join(new_basket)
        new_basket_tfidf = tfidf.transform([new_basket_str])

        # Comparar la nueva cesta con las anteriores
        similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)

        # Obtener los índices de las cestas más similares
        similar_indices = similarities.argsort()[0][-3:]  # Las 3 más similares

        # Crear un diccionario para contar las recomendaciones
        recommendations_count = {}
        total_similarity = 0

        # Recomendar productos de cestas similares
        for idx in similar_indices:
            sim_score = similarities[0][idx]
            total_similarity += sim_score
            products = cestas.iloc[idx]['Cestas'].split()

            for product in products:
                if product.strip() not in new_basket:  # Evitar recomendar lo que ya está en la cesta
                    if product.strip() in recommendations_count:
                        recommendations_count[product.strip()] += sim_score
                    else:
                        recommendations_count[product.strip()] = sim_score

        # Calcular la probabilidad relativa de cada producto recomendado
        recommendations_with_prob = []
        if total_similarity > 0:  # Verificar que total_similarity no sea cero
            recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
        else:
            print("No se encontraron similitudes suficientes para calcular probabilidades.")

        recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)  # Ordenar por puntuación

        # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
        recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])

        # Agregar las recomendaciones al DataFrame usando pd.concat
        for product, prob in recommendations_with_prob:
            # Buscar la descripción en el DataFrame de productos
            description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
            if not description.empty:
                # Crear un nuevo DataFrame temporal para la recomendación
                temp_df = pd.DataFrame({
                    'ARTICULO': [product],
                    'DESCRIPCION': [description.values[0]],  # Obtener el primer valor encontrado
                    'PROBABILIDAD': [prob]
                })
                # Concatenar el DataFrame temporal al DataFrame de recomendaciones
                recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)

        return recommendations_df

    # Comprobar si el cliente está en el CSV de fieles
    is_fiel = customer_code in fieles_df['Cliente'].astype(str).values

    if customer_code:
        if is_fiel:
            st.write(f"### Customer {customer_code} is a loyal customer.")
            option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])

            if option == "By Purchase History":
                st.warning("Option not available... aún")
            elif option == "By Current Basket":
                st.write("Select the items and assign quantities for the basket:")

                # Mostrar lista de artículos disponibles
                available_articles = productos['ARTICULO'].unique()
                selected_articles = st.multiselect("Select Articles", available_articles)

                # Crear inputs para ingresar las cantidades de cada artículo seleccionado
                quantities = {}
                for article in selected_articles:
                    quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)

                if st.button("Calcular"):  # Añadimos el botón "Calcular"
                    # Crear una lista de artículos basada en la selección
                    new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]

                    if new_basket:
                        # Procesar la lista para recomendar
                        recommendations_df = recomienda(new_basket)

                        if not recommendations_df.empty:
                            st.write("### Recommendations based on the current basket:")
                            st.dataframe(recommendations_df)
                        else:
                            st.warning("No recommendations found for the provided basket.")
                    else:
                        st.warning("Please select at least one article and set its quantity.")
        else:
            st.write(f"### Customer {customer_code} is not a loyal customer.")
            st.write("Select items and assign quantities for the basket:")

            # Mostrar lista de artículos disponibles
            available_articles = productos['ARTICULO'].unique()
            selected_articles = st.multiselect("Select Articles", available_articles)

            # Crear inputs para ingresar las cantidades de cada artículo seleccionado
            quantities = {}
            for article in selected_articles:
                quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)

            if st.button("Calcular"):  # Añadimos el botón "Calcular"
                # Crear una lista de artículos basada en la selección
                new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]

                if new_basket:
                    # Procesar la lista para recomendar
                    recommendations_df = recomienda(new_basket)

                    if not recommendations_df.empty:
                        st.write("### Recommendations based on the current basket:")
                        st.dataframe(recommendations_df)
                    else:
                        st.warning("No recommendations found for the provided basket.")
                else:
                    st.warning("Please select at least one article and set its quantity.")