Spaces:
Sleeping
Sleeping
File size: 30,133 Bytes
89e696a 36f3034 00825cb be51ad8 6e09d82 89e696a 449983f 2c1bfb4 02c25ad dfabd70 eca3864 ea19f03 801e1c6 02c25ad f637681 af4b90c 6160f84 ea19f03 02c25ad 6e09d82 6160f84 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c f637681 45bb8a5 449983f dfabd70 af4b90c f0e35ad dfabd70 04f10a7 ea19f03 00825cb 449983f 00825cb 04f10a7 83a6565 ea19f03 04f10a7 ea19f03 04f10a7 ea19f03 00825cb dfabd70 83a6565 00825cb ea19f03 00825cb dfabd70 00825cb dfabd70 00825cb dfabd70 ea19f03 00825cb 449983f 2c1bfb4 449983f 6e09d82 2c1bfb4 449983f b6148e0 ab9c8b0 36f3034 67f8e33 9f5e05c ab9c8b0 36f3034 04f10a7 36f3034 d0f6704 45bb8a5 36df00a 4508fcb 45bb8a5 4508fcb 801e1c6 ddf19f6 801e1c6 9f5e05c 4508fcb 801e1c6 0b0c0f3 9f5e05c 57e8206 4508fcb 0b0c0f3 9f5e05c 801e1c6 4508fcb 9f5e05c 4508fcb ddf19f6 4508fcb 9f5e05c 2cd23d8 9f5e05c 2cd23d8 801e1c6 4508fcb 801e1c6 2cd23d8 9f5e05c 2cd23d8 801e1c6 2cd23d8 9f5e05c 2cd23d8 4508fcb 801e1c6 ddf19f6 801e1c6 0cedfeb 801e1c6 0cedfeb 801e1c6 36df00a 801e1c6 f637681 36df00a 45bb8a5 36df00a accd0d7 9f5e05c 449983f 6e09d82 36f3034 6e09d82 d0f6704 36df00a 45bb8a5 36df00a 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 f8ab51b 6e09d82 36df00a 6e09d82 36df00a 6e09d82 36df00a 6e09d82 36df00a 6e09d82 16acf43 6e09d82 36df00a 3ac8646 6e09d82 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 36df00a 3ac8646 6e09d82 3ac8646 6e09d82 02c25ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
import lightgbm as lgb
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Load CSV files at the top, only once
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
fieles_df = pd.read_csv("clientes_relevantes.csv")
cestas = pd.read_csv("cestas.csv")
productos = pd.read_csv("productos.csv")
# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
if col != 'CLIENTE':
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
# Ignore the last two columns of df
df = df.iloc[:, :-2]
# Function to get supplier name
def get_supplier_name(code):
code = str(code) # Ensure code is a string
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Apply square root transformation
sqrt_values = np.sqrt(values)
sqrt_amounts = np.sqrt(amounts)
max_sqrt_value = max(sqrt_values)
normalized_values = [v / max_sqrt_value for v in sqrt_values]
# Adjust scaling for spend values
max_sqrt_amount = max(sqrt_amounts)
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, 1)
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])
# Home Page
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# Customer Analysis Page
# elif page == "Customer Analysis":
# st.title("Customer Analysis")
# st.markdown("Use the tools below to explore your customer data.")
# partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
# if partial_code:
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
# else:
# filtered_customers = df
# customer_list = filtered_customers['CLIENTE'].unique()
# customer_code = st.selectbox("Select Customer Code", customer_list)
# if st.button("Calcular"):
# if customer_code:
# # Find Customer's Cluster
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
# if not customer_match.empty:
# cluster = customer_match['cluster_id'].values[0]
# st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# # Load the Corresponding Model
# model_path = f'models/modelo_cluster_{cluster}.txt'
# gbm = lgb.Booster(model_file=model_path)
# st.write(f"Loaded model for cluster {cluster}")
# # Load X_predict for that cluster
# X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
# # Filter for the specific customer
# X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]
# if not X_cliente.empty:
# # Prepare data for prediction
# features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
# # Make Prediction for the selected customer
# y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
# # Reassemble the results
# results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
# results['ventas_predichas'] = y_pred
# st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
# # Load actual data
# df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
# actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
# if not actual_sales.empty:
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
# how='left')
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
# # Calculate metrics only for non-null actual sales
# valid_results = results.dropna(subset=['ventas_reales'])
# if not valid_results.empty:
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
# mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
# st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
# st.write(f"MAE: {mae:.2f}")
# st.write(f"MAPE: {mape:.2f}%")
# st.write(f"RMSE: {rmse:.2f}")
# # Analysis of results
# threshold_good = 100 # You may want to adjust this threshold
# if mae < threshold_good:
# st.success(f"Customer {customer_code} is performing well based on the predictions.")
# else:
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
# else:
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# # Show the radar chart
# all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
# all_manufacturers.index = all_manufacturers.index.astype(str)
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
# sales_data.index = sales_data.index.astype(str)
# sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
# sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
# top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
# combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
# combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
# combined_data = pd.DataFrame({
# 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
# 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
# }).fillna(0)
# combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
# non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
# if len(non_zero_manufacturers) < 3:
# zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
# manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
# else:
# manufacturers_to_show = non_zero_manufacturers
# values = manufacturers_to_show['units'].tolist()
# amounts = manufacturers_to_show['sales'].tolist()
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
# st.write(f"### Results for top {len(manufacturers)} manufacturers:")
# for manufacturer, value, amount in zip(manufacturers, values, amounts):
# st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
# if manufacturers:
# fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
# st.pyplot(fig)
# else:
# st.warning("No data available to create the radar chart.")
# # Show sales over the years graph
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
# if all(col in ventas_clientes.columns for col in sales_columns):
# years = ['2021', '2022', '2023']
# customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]
# fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
# fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
# st.plotly_chart(fig_sales)
# else:
# st.warning("Sales data for 2021-2023 not available.")
# else:
# st.warning(f"No prediction data found for customer {customer_code}.")
# else:
# st.warning(f"No data found for customer {customer_code}. Please check the code.")
# else:
# st.warning("Please select a customer.")
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("Use the tools below to explore your customer data.")
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code", customer_list)
if st.button("Calcular"):
if customer_code:
# Find Customer's Cluster
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
if not customer_match.empty:
cluster = customer_match['cluster_id'].values[0]
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# Load the Corresponding Model
model_path = f'models/modelo_cluster_{cluster}.txt'
gbm = lgb.Booster(model_file=model_path)
st.write(f"Loaded model for cluster {cluster}")
# Inspect the model
st.write("### Model Information:")
st.write(f"Number of trees: {gbm.num_trees()}")
st.write(f"Number of features: {gbm.num_feature()}")
st.write("Feature names:")
st.write(gbm.feature_name())
# Load X_predict for that cluster
X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
# Convert cliente_id to string
X_predict_cluster['cliente_id'] = X_predict_cluster['cliente_id'].astype(str)
st.write("### X_predict_cluster DataFrame:")
st.write(X_predict_cluster.head())
st.write(f"Shape: {X_predict_cluster.shape}")
# Filter for the specific customer
customer_code_str = str(customer_code)
X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code_str]
# Add debug statements
st.write(f"Unique customer IDs in X_predict_cluster: {X_predict_cluster['cliente_id'].unique()}")
st.write(f"Customer code we're looking for: {customer_code_str}")
st.write("### X_cliente DataFrame:")
st.write(X_cliente.head())
st.write(f"Shape: {X_cliente.shape}")
if not X_cliente.empty:
# Prepare data for prediction
features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
st.write("### Features for Prediction:")
st.write(features_for_prediction.head())
st.write(f"Shape: {features_for_prediction.shape}")
# Make Prediction for the selected customer
y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
st.write("### Prediction Results:")
st.write(f"Type of y_pred: {type(y_pred)}")
st.write(f"Shape of y_pred: {y_pred.shape}")
st.write("First few predictions:")
st.write(y_pred[:5])
# Reassemble the results
results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
results['ventas_predichas'] = y_pred
st.write("### Results DataFrame:")
st.write(results.head())
st.write(f"Shape: {results.shape}")
st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
# Load actual data
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
st.write("### Actual Sales DataFrame:")
st.write(actual_sales.head())
st.write(f"Shape: {actual_sales.shape}")
if not actual_sales.empty:
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
how='left')
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
st.write("### Final Results DataFrame:")
st.write(results.head())
st.write(f"Shape: {results.shape}")
# Calculate metrics only for non-null actual sales
valid_results = results.dropna(subset=['ventas_reales'])
if not valid_results.empty:
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
st.write(f"MAE: {mae:.2f}")
st.write(f"MAPE: {mape:.2f}%")
st.write(f"RMSE: {rmse:.2f}")
# Analysis of results
threshold_good = 100 # You may want to adjust this threshold
if mae < threshold_good:
st.success(f"Customer {customer_code} is performing well based on the predictions.")
else:
st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
else:
st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# Show the radar chart
all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
all_manufacturers.index = all_manufacturers.index.astype(str)
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
sales_data.index = sales_data.index.astype(str)
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
combined_data = pd.DataFrame({
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
}).fillna(0)
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
if len(non_zero_manufacturers) < 3:
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
else:
manufacturers_to_show = non_zero_manufacturers
values = manufacturers_to_show['units'].tolist()
amounts = manufacturers_to_show['sales'].tolist()
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
st.write(f"### Results for top {len(manufacturers)} manufacturers:")
for manufacturer, value, amount in zip(manufacturers, values, amounts):
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
if manufacturers:
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
else:
st.warning("No data available to create the radar chart.")
# Show sales over the years graph
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
if all(col in ventas_clientes.columns for col in sales_columns):
years = ['2021', '2022', '2023']
customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning("Sales data for 2021-2023 not available.")
else:
st.warning(f"No prediction data found for customer {customer_code}.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
else:
st.warning("Please select a customer.")
# Customer Recommendations Page
elif page == "Articles Recommendations":
st.title("Articles Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their basket.
""")
# Campo input para cliente
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
# Definición de la función recomienda
def recomienda(new_basket):
# Calcular la matriz TF-IDF
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
# Convertir la nueva cesta en formato TF-IDF
new_basket_str = ' '.join(new_basket)
new_basket_tfidf = tfidf.transform([new_basket_str])
# Comparar la nueva cesta con las anteriores
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
# Obtener los índices de las cestas más similares
similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
# Crear un diccionario para contar las recomendaciones
recommendations_count = {}
total_similarity = 0
# Recomendar productos de cestas similares
for idx in similar_indices:
sim_score = similarities[0][idx]
total_similarity += sim_score
products = cestas.iloc[idx]['Cestas'].split()
for product in products:
if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
if product.strip() in recommendations_count:
recommendations_count[product.strip()] += sim_score
else:
recommendations_count[product.strip()] = sim_score
# Calcular la probabilidad relativa de cada producto recomendado
recommendations_with_prob = []
if total_similarity > 0: # Verificar que total_similarity no sea cero
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
else:
print("No se encontraron similitudes suficientes para calcular probabilidades.")
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
# Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
# Agregar las recomendaciones al DataFrame usando pd.concat
for product, prob in recommendations_with_prob:
# Buscar la descripción en el DataFrame de productos
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
if not description.empty:
# Crear un nuevo DataFrame temporal para la recomendación
temp_df = pd.DataFrame({
'ARTICULO': [product],
'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
'PROBABILIDAD': [prob]
})
# Concatenar el DataFrame temporal al DataFrame de recomendaciones
recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
return recommendations_df
# Comprobar si el cliente está en el CSV de fieles
is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
if customer_code:
if is_fiel:
st.write(f"### Customer {customer_code} is a loyal customer.")
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
if option == "By Purchase History":
st.warning("Option not available... aún")
elif option == "By Current Basket":
st.write("Select the items and assign quantities for the basket:")
# Mostrar lista de artículos disponibles
available_articles = productos['ARTICULO'].unique()
selected_articles = st.multiselect("Select Articles", available_articles)
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
quantities = {}
for article in selected_articles:
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
if st.button("Calcular"): # Añadimos el botón "Calcular"
# Crear una lista de artículos basada en la selección
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
if new_basket:
# Procesar la lista para recomendar
recommendations_df = recomienda(new_basket)
if not recommendations_df.empty:
st.write("### Recommendations based on the current basket:")
st.dataframe(recommendations_df)
else:
st.warning("No recommendations found for the provided basket.")
else:
st.warning("Please select at least one article and set its quantity.")
else:
st.write(f"### Customer {customer_code} is not a loyal customer.")
st.write("Select items and assign quantities for the basket:")
# Mostrar lista de artículos disponibles
available_articles = productos['ARTICULO'].unique()
selected_articles = st.multiselect("Select Articles", available_articles)
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
quantities = {}
for article in selected_articles:
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
if st.button("Calcular"): # Añadimos el botón "Calcular"
# Crear una lista de artículos basada en la selección
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
if new_basket:
# Procesar la lista para recomendar
recommendations_df = recomienda(new_basket)
if not recommendations_df.empty:
st.write("### Recommendations based on the current basket:")
st.dataframe(recommendations_df)
else:
st.warning("No recommendations found for the provided basket.")
else:
st.warning("Please select at least one article and set its quantity.")
|