Spaces:
Sleeping
Sleeping
File size: 8,381 Bytes
89e696a 36f3034 00825cb 89e696a 449983f 2c1bfb4 449983f dfabd70 eca3864 ea19f03 f637681 af4b90c 6160f84 ea19f03 6160f84 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c 7a47c88 af4b90c f637681 45bb8a5 449983f dfabd70 af4b90c f0e35ad dfabd70 04f10a7 ea19f03 00825cb 449983f 00825cb 04f10a7 ea19f03 04f10a7 ea19f03 04f10a7 ea19f03 00825cb dfabd70 ea19f03 00825cb ea19f03 00825cb dfabd70 00825cb dfabd70 00825cb dfabd70 ea19f03 00825cb 449983f 2c1bfb4 449983f 2c1bfb4 449983f b6148e0 ab9c8b0 36f3034 67f8e33 ab9c8b0 36f3034 04f10a7 36f3034 d0f6704 45bb8a5 af4b90c 45bb8a5 ea19f03 45bb8a5 f637681 aed9cd2 7a47c88 c6a929c 449983f aed9cd2 5eb4c6b aed9cd2 af4b90c 5eb4c6b aed9cd2 af4b90c 5eb4c6b aed9cd2 04f10a7 11ebafd aed9cd2 04f10a7 aed9cd2 04f10a7 aed9cd2 af4b90c 04f10a7 af4b90c 04f10a7 aed9cd2 ea19f03 aed9cd2 416d73b 5eb4c6b 45bb8a5 449983f af4b90c f637681 45bb8a5 f637681 45bb8a5 accd0d7 449983f ab9c8b0 36f3034 d0f6704 45bb8a5 af4b90c f637681 45bb8a5 04f10a7 45bb8a5 00825cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Load CSV files
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
if col != 'CLIENTE':
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
# Ignore the last two columns of df
df = df.iloc[:, :-2]
# Function to get supplier name
def get_supplier_name(code):
code = str(code) # Ensure code is a string
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Apply square root transformation
sqrt_values = np.sqrt(values)
sqrt_amounts = np.sqrt(amounts)
max_sqrt_value = max(sqrt_values)
normalized_values = [v / max_sqrt_value for v in sqrt_values]
total_sqrt_amount = sum(sqrt_amounts)
normalized_amounts = [a / total_sqrt_amount for a in sqrt_amounts]
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, max(max(normalized_values), max(normalized_amounts)) * 1.1)
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Customer Recommendations"])
# Home Page
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# Customer Analysis Page
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("Use the tools below to explore your customer data.")
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code", customer_list)
if customer_code:
customer_data = df[df["CLIENTE"] == str(customer_code)]
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
if not customer_data.empty and not customer_euros.empty:
st.write(f"### Analysis for Customer {customer_code}")
# Get percentage of units sold for each manufacturer
all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
all_manufacturers.index = all_manufacturers.index.astype(str)
# Get total sales for each manufacturer
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
sales_data.index = sales_data.index.astype(str)
# Sort manufacturers by percentage of units and get top 10
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# Sort manufacturers by total sales and get top 10
top_sales = sales_data.sort_values(by=sales_data.columns[0], ascending=False).head(10)
# Combine top manufacturers from both lists
combined_top = pd.concat([top_units, top_sales]).index.unique()
values = [] # Will store percentages
manufacturers = []
amounts = [] # Will store total sales
for m in combined_top:
if m in all_manufacturers.index and m in sales_data.index:
values.append(float(all_manufacturers.loc[m, all_manufacturers.columns[0]]))
manufacturers.append(get_supplier_name(m))
amounts.append(float(sales_data.loc[m, sales_data.columns[0]]))
st.write(f"### Results for top {len(manufacturers)} manufacturers (balanced by units % and total sales):")
for manufacturer, value, amount in zip(manufacturers, values, amounts):
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
if manufacturers: # Only create the chart if we have data
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
else:
st.warning("No data available to create the radar chart.")
# Customer sales 2021-2024 (if data exists)
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024']
if all(col in df.columns for col in sales_columns):
years = ['2021', '2022', '2023', '2024']
customer_sales = customer_data[sales_columns].values[0]
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning("Sales data for 2021-2024 not available.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
# Customer Recommendations Page
elif page == "Customer Recommendations":
st.title("Customer Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their purchasing history.
""")
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code for Recommendations", customer_list)
if customer_code:
customer_data = df[df["CLIENTE"] == str(customer_code)]
if not customer_data.empty:
st.write(f"### Purchase History for Customer {customer_code}")
st.write(customer_data)
st.write(f"### Recommended Products for Customer {customer_code}")
# Placeholder for recommendation logic
st.write("Product A, Product B, Product C")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.") |