File size: 20,221 Bytes
f1ac821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import pandas as pd
import streamlit as st
import gspread
from google.oauth2.service_account import Credentials
import ast
import requests
import pandas as pd
import boto3
from datetime import datetime
import json
# Define the scope
start = False
starting_position = []
tradeHistory_positions = []


s3 = boto3.resource(
    service_name = 's3',
    region_name = 'ap-south-1',
    aws_access_key_id = 'AKIA3TD2SOLYZML62HJR',
    aws_secret_access_key ='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'
)

obj = s3.Bucket('usdsmcoinmdata').Object('copyLeaderboard_trade_history.csv').get()
df = pd.read_csv(obj['Body'],index_col=False)

df2 = pd.read_csv('df.csv')

def convert_str_to_list_or_keep(value):
    if isinstance(value, str):
        try:
            return ast.literal_eval(value)
        except (SyntaxError, ValueError):
            return value
    else:
        return value

df = df.apply(lambda col: col.map(convert_str_to_list_or_keep))
df2 = df2.apply(lambda col: col.map(convert_str_to_list_or_keep))





df['positionClosed'] = False

print(df)

uid_input = int(st.text_input("Enter U_IDs to filter"))

option = st.radio("Choose an option:", ["Show Position History", "Show Live Positions"])

if df is not None and uid_input:

    if option == "Show Position History":
        st.title("Position History Viewer")
        # Display starting positions with clickable rows
        st.header("Starting Positions")
        
        filtered_df = df[df['U_IDs'] == uid_input].copy() 
        print("filtered df",filtered_df)

        if not filtered_df.empty:
            trade_list = filtered_df['trade_history'].iloc[0]
        else:
            st.write("No data found for the provided U_ID.")


        unique_lists = []

        def get_amounts_from_positions_and_closed_trades(data):
                    print("revheeeeeeeeeeeeeeeegfeggggggggggggg")
                    print('data',data)
            

                    # Check if 'Modified' key exists and extract amounts
                    if 'Modified' in data:
                        modified_positions = data['Modified']
                        print("reeeeeegggggggggggggg33")
                        print(modified_positions)
                        print(type(modified_positions))
                        # modified_positions = modified_positions[0]
                        if isinstance(modified_positions, dict) and 'amount' in modified_positions:
                                    print("reafffffffff000000000")
                                    amount = modified_positions.get('amount')
                                    if isinstance(amount, (int, float)):  # Check if amount is a number
                                        amounts =amount
                    # Check if 'ClosedTrades' key exists and extract amounts
                    if 'ClosedTrades' in data:
                        closed_trades = data['ClosedTrades']
                        closed_trades =closed_trades[0]
                        if isinstance(closed_trades, dict) and 'amount' in closed_trades:
                                    amount = closed_trades.get('amount')
                                    if isinstance(amount, (int, float)):  # Check if amount is a number
                                        amounts = amount

                    return amounts
                
        def get_symbols_from_positions_and_closed_trades(data):
                        

                        # Check if 'Modified' key exists and extract symbols
                        if 'Modified' in data:
                            modified_positions = data['Modified']
                            # modified_positions =modified_positions
                            if isinstance(modified_positions, dict) and 'symbol' in modified_positions:
                                        symbol = modified_positions['symbol']

                        # Check if 'ClosedTrades' key exists and extract symbols
                        if 'ClosedTrades' in data:
                            closed_trades = data['ClosedTrades']
                            closed_trades =closed_trades[0]
                            if isinstance(closed_trades, dict) and 'symbol' in closed_trades:
                                        symbol = closed_trades['symbol']

                        return symbol

        for i in range(len(trade_list)):

            
            if trade_list[i]=="none":
                continue

            if not trade_list:  # Check if the trade_list is empty
                st.header("No data found, this may not be in the leaderboard")

            if start ==False:
                st.subheader(f"Data is from {datetime.now()}")
                start =True
            foundCLosed = False
            changeInAmount = 0
            
            if 'symbol' in trade_list[i]:
                symbol = trade_list[i]['symbol']
                side  ="buy" if float(trade_list[i]['amount'])>0 else "sell"
                amount = trade_list[i]['amount']
                symbol = trade_list[i]['symbol']     
                trade_list[i]['side'] =side
                trade_list[i]['changeInAmount'] = changeInAmount
                trade_list[i]['i'] = i
                unique_lists.append({"position":trade_list[i]})
                trade_list[i] = "none"
                

            else:    
                if 'positions' in trade_list[i]:
                    reached = False
                    # Collect necessary data first before modifying the dictionary
                    for k, v in list(trade_list[i].items()):  # Convert to a list to avoid modifying during iteration
                        for entry in v:
                            if 'NewPosition' in entry:
                                new_position = entry.get('NewPosition', {})
                                # Extract symbol and amount
                                symbol = new_position.get('symbol')
                                amount = new_position.get('amount')
                                # if start==False:
                                #     start_time = new_position.get('updateTime')
                                #     year = start_time[0]
                                #     month = start_time[1]
                                #     day = start_time[2]
                                #     hour =start_time[3]
                                #     minute =start_time[4]
                                #     seconds = start_time[5]
                                #     dt = datetime(year, month, day, hour, minute, seconds)
                                #     human_readable_format = dt.strftime('%B %d, %Y, %I:%M:%S %p')     
                                #     st.subheader(f"Data from {human_readable_format}")
                                #     start=True 
                                # if start==False:
                                #     
                                #     start =True
                                side = "buy" if amount > 0 else "sell"
                                new_position['side'] = side
                                new_position['changeInAmount'] = changeInAmount
                                new_position['i'] = i
                                # Update the entry with the modified 'NewPosition'
                                entry['NewPosition'] = new_position
                                
                                # Append the updated trade_list[i] to unique_lists
                                unique_lists.append(trade_list[i])

                                reached = True

                    # Now safely modify the dictionary after iteration is complete
                    if reached:
                        trade_list[i] = "none"

                    # Now safely modify the dictionary after iteration is complete
                                

            for j in range(i+1, len(trade_list)):
                if trade_list[j] == "none":
                    continue

                if 'positions' in trade_list[j] and isinstance(trade_list[j]['positions'], list):
                    for position in trade_list[j]['positions']:
                        # Check if 'Modified' is in the position and is a dict
                        if 'Modified' in position and isinstance(position['Modified'], dict):
                            
                            # if start==False:
                            #         for k,v in position.items():
                            #             start_time = v['updateTime']
                                    
                            #         year = start_time[0]
                            #         month = start_time[1]
                            #         day = start_time[2]
                            #         hour =start_time[3]
                            #         minute =start_time[4]
                            #         seconds = start_time[5]
                            #         dt = datetime(year, month, day, hour, minute, seconds)
                            #         human_readable_format = dt.strftime('%d-%m-%Y %H:%M:%S')   
                            #         st.subheader(f"Data from {human_readable_format}")
                            #         start=True 
                            modified_amount = get_amounts_from_positions_and_closed_trades(position)
                            modified_symbol = get_symbols_from_positions_and_closed_trades(position)

                            if modified_amount > 0:
                                modified_side = "buy"
                            else:
                                modified_side = "sell"
                            
                            if symbol == modified_symbol and side == modified_side:
                                if start ==False:
                                    st.header(f"Data is from {datetime.now}")
                                    start =True
                                position['Modified']['side'] = modified_side
                                position['Modified']['changeInAmount'] = float(amount) - modified_amount if modified_amount < 0 else modified_amount - float(amount)
                                position['Modified']['i'] = i
                                amount = modified_amount
                                unique_lists.append(trade_list[j])
                                trade_list[j] = "none"
                        
                        # Check if 'ClosedTrades' is in the position and is a tuple
                        if 'ClosedTrades' in position and isinstance(position['ClosedTrades'], tuple):
                            if start ==False:
                                    st.header(f"Data is from {datetime.now}")
                                    start =True
                            foundCLosed = False
                            closed_trades_tuple = position['ClosedTrades']
                            closed_trades_dict = {
                                'trade_info': closed_trades_tuple[0],
                                'side': closed_trades_tuple[1]
                            }
                            
                            closed_amount = get_amounts_from_positions_and_closed_trades(position)
                            closed_symbol = get_symbols_from_positions_and_closed_trades(position)

                            if closed_amount > 0:
                                closed_side = "buy"
                            else:
                                closed_side = "sell"

                            if symbol == closed_symbol and side == closed_side:
                                # if start==False:
                                #     for k,v in position.items():
                                #         start_time = v['updateTime']
                                #     start =True
                                
                                closed_trades_dict['side'] = closed_side
                                trade_info = closed_trades_dict['trade_info']
                                trade_info['changeInAmount'] = float(amount) - closed_amount if closed_amount < 0 else closed_amount - float(amount)
                                amount = closed_amount
                                closed_trades_dict['trade_info']['i'] = i  # Store index 'i' inside 'ClosedTrades'
                                closed_trades_dict['trade_info']['closed'] = True
                                
                                # Append the updated trade_list[j] to unique_lists
                                unique_lists.append(trade_list[j])
                                trade_list[j] = "none"
                                foundCLosed = True
                                break

                        # Break the inner loop if a closed trade was found
                if foundCLosed:
                            break        


                                                
                            
            for k in range(len(unique_lists)):
                data = unique_lists[k]
                            

                if k ==0: 
                    
                    
                    if 'positions' in data:
                        if isinstance(data['positions'], list):
                            for a in data['positions']:
                                if 'NewPosition' in a:
                                    
                                    position_data = a['NewPosition']
                                    starting_position.append(position_data)
                                    tradeHistory_positions.append(position_data)
                                    

                    else:
                        if 'position' in data:
                            position_data =data['position']
                            starting_position.append(position_data)
                            tradeHistory_positions.append(position_data)

                        
                
                if 'positions' in data:
                    if isinstance(data['positions'],list):
                        for a in data['positions']:
                                if 'ClosedTrades' in a:
                                    position_data = a['ClosedTrades'][0]
                                    tradeHistory_positions.append(position_data)



                if 'positions' in data:
                    if isinstance(data['positions'],list):
                        for a in data['positions']:
                                if 'Modified' in a:
                                    position_data = a['Modified']
                                    tradeHistory_positions.append(position_data)


                

            unique_lists =[]

    elif option == "Show Live Positions":
        filtered_df2 = df2[df2['U_IDs'] == uid_input]

        if not filtered_df2.empty:

            positions_list = filtered_df2['Positions'].iloc[0]  # Extract the first match

            # Convert the list of dictionaries to a DataFrame
            if isinstance(positions_list, list) and positions_list:
                positions_df = pd.DataFrame(positions_list)
                st.subheader("Live Positions")
                st.dataframe(positions_df)
            else:
                st.write("No live positions data available for the given U_ID.")


        
        # data3 = sheet3.get_all_values()
        # headers3 = data3.pop(0)
        # df3 = pd.DataFrame(data3, columns=headers3)
        # filtered_df3 = df3[df3['U_IDs'] == uid_input]
        # st.subheader("Performace")
        # st.dataframe(filtered_df3)
        
            
    
    def show_position_history(selected_position):
        st.header(f"History for {selected_position}")
        
        # Filter trade history for the selected position
        position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]


        
        if position_history:
            df_history = pd.DataFrame(position_history)

            df_history['changeInAmount'] = pd.to_numeric(df_history['changeInAmount'], errors='coerce')
            df_history['markPrice'] = pd.to_numeric(df_history['markPrice'], errors='coerce')
            df_history['entryPrice'] = pd.to_numeric(df_history['entryPrice'], errors='coerce')

            df_history['amount'] = pd.to_numeric(df_history['amount'],errors='coerce')

# Replace NaN with 0 or handle as required
            df_history.fillna(0, inplace=True)
            
            # Update the global timestamp with the last update from history
            columns_to_check = [
    'symbol', 'side', 'amount', 'changeInAmount', 'markPrice',
    'entryPrice', 'pnl', 'roe', 'leverage', 'updateTime',
    'tradeType', 'stopLossPrice', 'takeProfitPrice', 'weightedScoreRatio'
]

# Adding missing columns with None as default
            for column in columns_to_check:
                if column not in df_history.columns:
                    df_history[column] = None
            
            # Create a transformed DataFrame for display
            df_transformed = pd.DataFrame({
    'Pair/Asset': df_history['symbol'],
    'is long': df_history['side'],
    'Current size after change': df_history['amount'],
    'Change in size in Asset': df_history['changeInAmount'],
    'Change in size in USDT': df_history['changeInAmount'] * -(df_history['markPrice']),
    'Entry price': df_history['entryPrice'],
    'Exit price': df_history['markPrice'],
    'pnl in usdt': df_history['pnl'],
    'pnl in %': df_history['roe'],
    'Leverage': df_history['leverage'],
    # 'updatedTime': df_history['updateTime'],
    'Trade Type': df_history['tradeType'],  # New field
    'Stop Loss Price': df_history['stopLossPrice'],  # New field
    'Take Profit Price': df_history['takeProfitPrice'],  # New field
    'Weighted Score Ratio': df_history['weightedScoreRatio'],  # New field
    # 'Transaction Value in USDT': df_history['amount'] * df_history['markPrice'],  # New calculation
    'Profit/Loss Ratio': (df_history['markPrice'] - df_history['entryPrice']) / df_history['entryPrice']  # New calculation
})
            
            if 'closed' in df_history.columns:
                df_transformed['Position closed'] = df_history['closed']
            
            st.dataframe(df_transformed)
            
            # Add the update timestamp to the transformed DataFrame
            
        else:
            st.write("No history found for this position.")

    def lastUpdated(selected_position):
        position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
        return  position_history[-1]['updateTime']
    
    def isClosed(selected_position):
    # Filter trade history for the selected position
        position_history = [pos for pos in tradeHistory_positions if pos['i'] == selected_position]
        
        # Check if there are any records for the selected position
        if not position_history:
            return False
        
        # Get the most recent entry for the selected position
        last_entry = position_history[-1]
        
        # Check if the 'closed' key exists and if it indicates the position is closed
        return last_entry.get('closed', False)


         

    def main():
        df_starting = pd.DataFrame(starting_position)
        
        for index, row in df_starting.iterrows():
            side = True if float(row['amount']) > 0 else False
            is_closed = isClosed(row['i'])
            
            # Generate a unique key for the button
            button_key = f"position_{row['i']}"
            
            # Display a button for each trade position
            if st.button(
                f"{row['symbol']} : Long: {side}, Entry Price: {row['entryPrice']}, "
                f"Market Price: {row['markPrice']}, Amount: {row['amount']}, "
                f"Leverage: {row['leverage']}, isClosed: {is_closed}",
                key=button_key
            ):
                show_position_history(row['i'])

    if __name__ == "__main__":
        main()