Spaces:
Paused
Paused
File size: 1,779 Bytes
cf32bd5 7138209 cf32bd5 eb6c3f3 cf32bd5 3b602a6 5f75262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Gaepago model V1 (CPU Test)
# import package
from transformers import AutoModelForAudioClassification
from transformers import AutoFeatureExtractor
from transformers import pipeline
from datasets import Dataset, Audio
import gradio as gr
import torch
# Set model & Dataset NM
MODEL_NAME = "Gae8J/gaepago-20"
DATASET_NAME = "Gae8J/modeling_v1"
# Import Model & feature extractor
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
model.to("cpu")
# Gaepago Inference Model function
def gaepago_fn(tmp_audio_dir):
print(tmp_audio_dir)
audio_dataset = Dataset.from_dict({"audio": [tmp_audio_dir]}).cast_column("audio", Audio(sampling_rate=16000))
inputs = feature_extractor(audio_dataset[0]["audio"]["array"]
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
,return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_ids = torch.argmax(logits).item()
predicted_label = model.config.id2label[predicted_class_ids]
return predicted_label
# Main
main_api = gr.Blocks()
with main_api:
gr.Markdown("## 8J Gaepago Demo(with CPU)")
with gr.Row():
audio = gr.Audio(source="microphone", type="filepath"
,label='๋
น์๋ฒํผ์ ๋๋ฌ ์ด์ฝ๊ฐ ํ๋ ๋ง์ ๋ค๋ ค์ฃผ์ธ์')
transcription = gr.Textbox(label='์ง๊ธ ์ด์ฝ๊ฐ ํ๋ ๋ง์...')
b1 = gr.Button("๊ฐ์์ง ์ธ์ด ๋ฒ์ญ!")
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
# examples = gr.Examples(examples=example_list,
# inputs=[audio])
main_api.launch() |