File size: 3,253 Bytes
d347764
 
 
 
 
45f833a
d347764
 
6927d82
 
d347764
6e5cca5
 
 
 
45f833a
6e5cca5
 
 
 
 
d347764
 
6e5cca5
d347764
6e5cca5
d347764
 
13f8a3e
d347764
 
 
 
6e5cca5
 
d347764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f805e49
 
6e5cca5
c6f1d54
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"
#tokenizer = WhisperTokenizer.from_pretrained("GatinhoEducado/whisper-tiny-finetuned-minds14", language="Portuguese", task="translate")
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="Portuguese", task="translate")
# load speech translation checkpoint
asr_pipe = pipeline(
    "automatic-speech-recognition", 
    model="GatinhoEducado/whisper-tiny-finetuned-minds14",
    device=device,
    tokenizer = tokenizer,
    generate_kwargs = {"language":"<|pt|>",
                     "task": "transcribe",
                     "repetition_penalty":1.5
                     }
)

# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts")

model = SpeechT5ForTextToSpeech.from_pretrained("GatinhoEducado/speechT5_tts-finetuned-cml-tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", trust_remote_code=True)
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    #outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
    outputs = asr_pipe(audio, max_new_tokens=100)
    return outputs["text"]


def synthesise(text):
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in English to target Portuguese speech. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()