File size: 22,584 Bytes
6a6227f
 
fe2cfb5
 
6a6227f
6eb1d7d
6a6227f
7b80416
6a6227f
 
 
 
 
6927e60
6eb1d7d
6a6227f
 
6934968
6a6227f
6934968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6227f
 
 
 
 
3e791eb
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb1d7d
6a6227f
6eb1d7d
6a6227f
 
 
640d658
6a6227f
 
 
 
 
 
 
 
 
5df167a
 
 
 
 
 
 
 
 
 
6a6227f
5df167a
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6934968
6a6227f
6934968
6a6227f
 
 
 
 
 
 
5df167a
6a6227f
 
 
 
6934968
 
 
0912ba9
6934968
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c6c10
 
 
6a6227f
 
 
 
 
 
 
21c6c10
32b0bc1
b339a83
 
32b0bc1
 
6a6227f
2e9453b
6a362f6
 
 
aad9b83
6a362f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad9b83
6a362f6
 
aad9b83
 
6a362f6
aad9b83
 
6a362f6
 
2e9453b
 
 
 
 
1d2882d
2e9453b
 
 
 
 
 
 
1d2882d
2e9453b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d2882d
 
 
 
 
 
 
2e9453b
 
 
9feed13
 
2e9453b
 
9feed13
2e9453b
9feed13
 
 
 
a04628b
c7cc419
9feed13
 
 
 
6a6227f
6a362f6
6a6227f
 
 
 
 
 
 
9feed13
 
aad9b83
6a6227f
 
 
6a362f6
6a6227f
9feed13
 
aad9b83
6a6227f
6a362f6
6a6227f
2e9453b
 
 
eb790bc
2e9453b
eb790bc
 
 
 
 
2e9453b
 
 
6a6227f
 
abf650f
6a6227f
abf650f
6a6227f
 
37bb6e0
6a6227f
2e9453b
 
 
938f1a2
2e9453b
 
6a6227f
 
296d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6227f
9feed13
 
 
 
 
6a6227f
 
9feed13
 
 
 
 
6a6227f
 
9feed13
 
 
 
 
6a6227f
 
9feed13
6a6227f
296d83b
6a6227f
 
6a362f6
9feed13
 
 
 
6a6227f
 
aad9b83
6a6227f
 
 
 
 
 
 
9feed13
6a6227f
 
 
 
 
 
 
 
9feed13
6a6227f
aad9b83
6a6227f
 
 
 
 
 
 
9feed13
6a6227f
 
 
 
 
 
 
 
9feed13
6a6227f
 
 
 
 
 
 
 
9feed13
6a6227f
 
 
9feed13
 
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeecb24
9feed13
6a6227f
 
 
 
2e9453b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime

import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
from PIL import Image

def add_watermark(main_image, logo_path, position='bottom-right', size_percentage=10):
    """
    Add a watermark to an image
    Args:
        main_image (PIL.Image): The main image
        logo_path (str): Path to the logo image
        position (str): Position of watermark ('bottom-right', 'bottom-left', 'top-right', 'top-left')
        size_percentage (int): Size of watermark relative to main image (in percentage)
    Returns:
        PIL.Image: Image with watermark
    """
    # Open and resize the logo
    logo = Image.open(logo_path).convert('RGBA')
    
    # Calculate the size for the logo
    main_width, main_height = main_image.size
    logo_width = int(main_width * size_percentage / 100)
    logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
    logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
    
    # Convert main image to RGBA if it isn't already
    if main_image.mode != 'RGBA':
        main_image = main_image.convert('RGBA')
    
    # Create a new blank image with the same size as main image
    watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
    watermarked.paste(main_image, (0, 0))
    
    # Calculate position
    if position == 'bottom-right':
        position = (main_width - logo_width - 10, main_height - logo_height - 10)
    elif position == 'bottom-left':
        position = (10, main_height - logo_height - 10)
    elif position == 'top-right':
        position = (main_width - logo_width - 10, 10)
    elif position == 'top-left':
        position = (10, 10)
    
    # Paste the logo
    watermarked.paste(logo, position, logo)
    
    # Convert back to RGB
    return watermarked.convert('RGB')
    
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="booksforcharlie/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )

    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint", 
        action="store_true", 
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args

def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
    base_ckpt=args.base_model_path,
    attn_ckpt=repo_path,
    attn_ckpt_version="mix",
    weight_dtype=init_weight_dtype(args.mixed_precision),
    use_tf32=args.allow_tf32,
    device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    device='cuda', 
)

@spaces.GPU(duration=120)
def submit_function(
    person_image,
    cloth_image,
    cloth_type,
    num_inference_steps,
    guidance_scale,
    seed,
    show_type
):
    # Check if layers exist and are not empty
    if "layers" in person_image and person_image["layers"]:
        person_image, mask = person_image["background"], person_image["layers"][0]
        mask = Image.open(mask).convert("L")
        if len(np.unique(np.array(mask))) == 1:  # All mask values are the same (empty mask)
            mask = None
        else:
            mask = np.array(mask)
            mask[mask > 0] = 255  # Convert to binary mask (0 or 255)
            mask = Image.fromarray(mask)
    else:
        person_image = person_image["background"]
        mask = None  # No mask is provided, it will be auto-generated

    tmp_folder = args.output_dir
    date_str = datetime.now().strftime("%Y%m%d%H%M%S")
    result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
    if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
        os.makedirs(os.path.join(tmp_folder, date_str[:8]))

    generator = None
    if seed != -1:
        generator = torch.Generator(device='cuda').manual_seed(seed)

    person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
    
    # Process mask
    if mask is not None:
        mask = resize_and_crop(mask, (args.width, args.height))
    else:
        mask = automasker(
            person_image,
            cloth_type
        )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    result_image = pipeline(
        image=person_image,
        condition_image=cloth_image,
        mask=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    )[0]
    
    # Post-process
    masked_person = vis_mask(person_image, mask)
    save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
    save_result_image.save(result_save_path)
    final_image = None
    if show_type == "result only":
        final_image = result_image
    else:
        width, height = person_image.size
        if show_type == "input & result":
            condition_width = width // 2
            conditions = image_grid([person_image, cloth_image], 2, 1)
        else:
            condition_width = width // 3
            conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
        conditions = conditions.resize((condition_width, height), Image.NEAREST)
        new_result_image = Image.new("RGB", (width + condition_width + 5, height))
        new_result_image.paste(conditions, (0, 0))
        new_result_image.paste(result_image, (condition_width + 5, 0))
        final_image = new_result_image
    
    # Add watermark
    watermarked_image = add_watermark(final_image, 'logo.png', 'bottom-right', 20)
    return watermarked_image


def person_example_fn(image_path):
    return image_path

HEADER = """
<h1 style="text-align: center;"> 馃悎 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
<div style="display: flex; justify-content: center; align-items: center;">
  <a href="http://arxiv.org/abs/2407.15886" style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/arXiv-2407.15886-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
  </a>
  <a href='https://huggingface.co/zhengchong/CatVTON' style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/Hugging Face-ckpts-orange?style=flat&logo=HuggingFace&logoColor=orange' alt='huggingface'>
  </a>
  <a href="https://github.com/Zheng-Chong/CatVTON" style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
  </a>
  <a href="http://120.76.142.206:8888" style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
  </a>
  <a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
  </a>
  <a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
  </a>
  <a href="https://github.com/Zheng-Chong/CatVTON/LICENCE" style="margin: 0 2px;">
    <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
  </a>
</div>
<br>
路 This demo and our weights are only for Non-commercial Use. <br>
路 You can try CatVTON in our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a> or our <a href="http://120.76.142.206:8888">online demo</a> (run on 3090). <br>
路 Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
路 SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br> 
"""
def app_gradio():
    custom_css = """
        @media (max-width: 768px) {
    .gr-column {
        width: 100% !important;
        padding: 0.5rem;
    }
    .gr-row {
        flex-direction: column !important;
    }
    .container {
        margin: 0.5rem !important;
        padding: 1rem !important;
    }
    button.primary-btn {
        padding: 0.8rem 1rem;
        font-size: 1rem;
    }
}

@media (max-width: 480px) {
    .gr-slider, .gr-radio-group, .gr-markdown, .gr-accordion {
        font-size: 0.9rem !important;
        padding: 0.5rem;
    }
    button.primary-btn {
        font-size: 0.8rem;
        padding: 0.6rem 0.8rem;
    }
    .gr-form {
        margin: 0.5rem;
    }
}
        button.primary-btn { 
            background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
            transition: all 0.3s ease;
            border: none;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
            color: white !important;
        }
        button.primary-btn:hover {
            transform: translateY(-2px);
            box-shadow: 0 4px 8px rgba(0,0,0,0.2);
        }
        .gr-button { 
            background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
            color: white !important;
            border: none;
            transition: all 0.3s ease;
        }
        .gr-button:hover {
            opacity: 0.9;
            transform: translateY(-2px);
        }
        body { 
            background: linear-gradient(135deg, #f8f9fa 0%, #e8eaf6 100%);
        }
        .container {
            border-radius: 12px;
            box-shadow: 0 4px 6px rgba(0,0,0,0.1);
        }
        .gr-form {
            border-radius: 8px;
            background: white;
            box-shadow: 0 2px 4px rgba(0,0,0,0.05);
        }
        .gr-radio-group {
            background: white;
            padding: 12px;
            border-radius: 8px;
        }
        .gr-accordion {
            border-radius: 8px;
            overflow: hidden;
        }
        /* Force white text in buttons */
        button.primary-btn span {
            color: white !important;
        }
        .gr-button span {
            color: white !important;
        }
    """

    with gr.Blocks(title="Deradh Virtual Try-On", css=custom_css) as demo:
        gr.Markdown(
            """
            <div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
                <h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
                <div style="margin: 1rem 0;">
                    <a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
                        Visit Deradh.com
                    </a>
                </div>
            </div>
            <div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
          Experience the future of fashion with our AI-powered virtual try-on technology, Every user will get 2-3 Free trials per day
            </div>
            """
        )
        
        with gr.Row():
            with gr.Column(scale=1, min_width="auto"):
                with gr.Row():
                    image_path = gr.Image(
                        type="filepath",
                        interactive=True,
                        visible=False,
                    )
                    person_image = gr.ImageEditor(
                        interactive=True, 
                        label="Upload Your Photo", 
                        type="filepath"
                    )

                with gr.Row():
                    with gr.Column(scale=1, min_width="auto"):
                        cloth_image = gr.Image(
                            interactive=True, 
                            label="Select Garment", 
                            type="filepath"
                        )
                    with gr.Column(scale=1, min_width="auto"):
                        gr.Markdown(
                            '''
                            <div style="color: white; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); 
                                padding: 1.2rem; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
                                <h3 style="margin: 0 0 0.8rem 0; color: white;">For Best Performance:</h3>
                                <ol style="margin: 0; padding-left: 1.2rem;">
                                    <li>Stand in front of a plain, contrasting background.</li>
                                    <li>Ensure your entire body is visible in the frame.</li>
                                    <li>Upload the highest quality image possible.</li>
                                    <li>Avoid cluttered or low-light environments.</li>
                                    <li>Wear minimal accessories for accurate results.</li>
                                </ol>
                            </div>
                            '''
                        )
                        cloth_type = gr.Radio(
                            label="(Important) Garment Type",
                            choices=["upper", "lower", "overall"],
                            # value="upper",
                        )

                submit = gr.Button("Try On", elem_classes="primary-btn", elem_id="submit_btn")
                gr.Markdown(
                    '''
                    <div style="text-align: center; color: #1a237e; font-weight: 500; margin: 1rem 0; 
                        padding: 0.8rem; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
                       Important: Please wait after clicking Try On - Processing may take a moment
                    </div>
                    '''
                )
                
                # gr.Markdown(
                #     '''
                #     <div style="background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); 
                #         color: white; padding: 1.2rem; border-radius: 8px; margin-top: 1rem; 
                #         box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
                #         <h3 style="margin: 0 0 0.8rem 0; color: white;">Advanced Settings:</h3>
                #         <ul style="margin: 0; padding-left: 1.2rem;">
                #             <li>Increase Steps for higher quality</li>
                #             <li>Adjust CFG for color intensity</li>
                #             <li>Change Seed for different variations</li>
                #         </ul>
                #     </div>
                #     '''
                # )
                with gr.Accordion("Developer Options", open=False):
                    num_inference_steps = gr.Slider(
                        label="Quality Steps", 
                        minimum=10, 
                        maximum=100, 
                        step=5, 
                        value=50
                    )
                    guidance_scale = gr.Slider(
                        label="Style Intensity", 
                        minimum=0.0, 
                        maximum=7.5, 
                        step=0.5, 
                        value=2.5
                    )
                    seed = gr.Slider(
                        label="Variation Seed", 
                        minimum=-1, 
                        maximum=10000, 
                        step=1, 
                        value=42
                    )
                    show_type = gr.Radio(
                        label="Display Options",
                        choices=["result only", "input & result", "input & mask & result"],
                        value="input & result",
                    )

            with gr.Column(scale=2, min_width="auto"):
                result_image = gr.Image(
                    interactive=False, 
                    label="Virtual Try-On Result"
                )
                with gr.Row():
                    root_path = "resource/demo/example"
                    with gr.Column():
                        men_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "men", _)
                                for _ in os.listdir(os.path.join(root_path, "person", "men"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Sample Photos - Men",
                        )
                        women_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "person", "women", _)
                                for _ in os.listdir(os.path.join(root_path, "person", "women"))
                            ],
                            examples_per_page=4,
                            inputs=image_path,
                            label="Sample Photos - Women",
                        )
                    with gr.Column():
                        condition_upper_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "upper", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Sample Upper Garments",
                        )
                        condition_overall_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "overall", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Sample Full Outfits",
                        )
                        condition_person_exm = gr.Examples(
                            examples=[
                                os.path.join(root_path, "condition", "person", _)
                                for _ in os.listdir(os.path.join(root_path, "condition", "person"))
                            ],
                            examples_per_page=4,
                            inputs=cloth_image,
                            label="Style Reference Photos",
                        )

            image_path.change(
                person_example_fn, 
                inputs=image_path, 
                outputs=person_image
            )

            submit.click(
                submit_function,
                [
                    person_image,
                    cloth_image,
                    cloth_type,
                    num_inference_steps,
                    guidance_scale,
                    seed,
                    show_type,
                ],
                result_image,
            )
            
            
    demo.queue().launch(share=True, show_error=True)


if __name__ == "__main__":
    app_gradio()