Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,584 Bytes
6a6227f fe2cfb5 6a6227f 6eb1d7d 6a6227f 7b80416 6a6227f 6927e60 6eb1d7d 6a6227f 6934968 6a6227f 6934968 6a6227f 3e791eb 6a6227f 6eb1d7d 6a6227f 6eb1d7d 6a6227f 640d658 6a6227f 5df167a 6a6227f 5df167a 6a6227f 6934968 6a6227f 6934968 6a6227f 5df167a 6a6227f 6934968 0912ba9 6934968 6a6227f 21c6c10 6a6227f 21c6c10 32b0bc1 b339a83 32b0bc1 6a6227f 2e9453b 6a362f6 aad9b83 6a362f6 aad9b83 6a362f6 aad9b83 6a362f6 aad9b83 6a362f6 2e9453b 1d2882d 2e9453b 1d2882d 2e9453b 1d2882d 2e9453b 9feed13 2e9453b 9feed13 2e9453b 9feed13 a04628b c7cc419 9feed13 6a6227f 6a362f6 6a6227f 9feed13 aad9b83 6a6227f 6a362f6 6a6227f 9feed13 aad9b83 6a6227f 6a362f6 6a6227f 2e9453b eb790bc 2e9453b eb790bc 2e9453b 6a6227f abf650f 6a6227f abf650f 6a6227f 37bb6e0 6a6227f 2e9453b 938f1a2 2e9453b 6a6227f 296d83b 6a6227f 9feed13 6a6227f 9feed13 6a6227f 9feed13 6a6227f 9feed13 6a6227f 296d83b 6a6227f 6a362f6 9feed13 6a6227f aad9b83 6a6227f 9feed13 6a6227f 9feed13 6a6227f aad9b83 6a6227f 9feed13 6a6227f 9feed13 6a6227f 9feed13 6a6227f 9feed13 6a6227f aeecb24 9feed13 6a6227f 2e9453b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
from PIL import Image
def add_watermark(main_image, logo_path, position='bottom-right', size_percentage=10):
"""
Add a watermark to an image
Args:
main_image (PIL.Image): The main image
logo_path (str): Path to the logo image
position (str): Position of watermark ('bottom-right', 'bottom-left', 'top-right', 'top-left')
size_percentage (int): Size of watermark relative to main image (in percentage)
Returns:
PIL.Image: Image with watermark
"""
# Open and resize the logo
logo = Image.open(logo_path).convert('RGBA')
# Calculate the size for the logo
main_width, main_height = main_image.size
logo_width = int(main_width * size_percentage / 100)
logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
# Convert main image to RGBA if it isn't already
if main_image.mode != 'RGBA':
main_image = main_image.convert('RGBA')
# Create a new blank image with the same size as main image
watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
watermarked.paste(main_image, (0, 0))
# Calculate position
if position == 'bottom-right':
position = (main_width - logo_width - 10, main_height - logo_height - 10)
elif position == 'bottom-left':
position = (10, main_height - logo_height - 10)
elif position == 'top-right':
position = (main_width - logo_width - 10, 10)
elif position == 'top-left':
position = (10, 10)
# Paste the logo
watermarked.paste(logo, position, logo)
# Convert back to RGB
return watermarked.convert('RGB')
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
repo_path = snapshot_download(repo_id=args.resume_path)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
@spaces.GPU(duration=120)
def submit_function(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# Check if layers exist and are not empty
if "layers" in person_image and person_image["layers"]:
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1: # All mask values are the same (empty mask)
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255 # Convert to binary mask (0 or 255)
mask = Image.fromarray(mask)
else:
person_image = person_image["background"]
mask = None # No mask is provided, it will be auto-generated
tmp_folder = args.output_dir
date_str = datetime.now().strftime("%Y%m%d%H%M%S")
result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
os.makedirs(os.path.join(tmp_folder, date_str[:8]))
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline(
image=person_image,
condition_image=cloth_image,
mask=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)[0]
# Post-process
masked_person = vis_mask(person_image, mask)
save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
save_result_image.save(result_save_path)
final_image = None
if show_type == "result only":
final_image = result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
final_image = new_result_image
# Add watermark
watermarked_image = add_watermark(final_image, 'logo.png', 'bottom-right', 20)
return watermarked_image
def person_example_fn(image_path):
return image_path
HEADER = """
<h1 style="text-align: center;"> 馃悎 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
<div style="display: flex; justify-content: center; align-items: center;">
<a href="http://arxiv.org/abs/2407.15886" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/arXiv-2407.15886-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
</a>
<a href='https://huggingface.co/zhengchong/CatVTON' style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Hugging Face-ckpts-orange?style=flat&logo=HuggingFace&logoColor=orange' alt='huggingface'>
</a>
<a href="https://github.com/Zheng-Chong/CatVTON" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
</a>
<a href="http://120.76.142.206:8888" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
</a>
<a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
</a>
<a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
</a>
<a href="https://github.com/Zheng-Chong/CatVTON/LICENCE" style="margin: 0 2px;">
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
</a>
</div>
<br>
路 This demo and our weights are only for Non-commercial Use. <br>
路 You can try CatVTON in our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a> or our <a href="http://120.76.142.206:8888">online demo</a> (run on 3090). <br>
路 Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co/spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
路 SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br>
"""
def app_gradio():
custom_css = """
@media (max-width: 768px) {
.gr-column {
width: 100% !important;
padding: 0.5rem;
}
.gr-row {
flex-direction: column !important;
}
.container {
margin: 0.5rem !important;
padding: 1rem !important;
}
button.primary-btn {
padding: 0.8rem 1rem;
font-size: 1rem;
}
}
@media (max-width: 480px) {
.gr-slider, .gr-radio-group, .gr-markdown, .gr-accordion {
font-size: 0.9rem !important;
padding: 0.5rem;
}
button.primary-btn {
font-size: 0.8rem;
padding: 0.6rem 0.8rem;
}
.gr-form {
margin: 0.5rem;
}
}
button.primary-btn {
background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
transition: all 0.3s ease;
border: none;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
color: white !important;
}
button.primary-btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
.gr-button {
background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
color: white !important;
border: none;
transition: all 0.3s ease;
}
.gr-button:hover {
opacity: 0.9;
transform: translateY(-2px);
}
body {
background: linear-gradient(135deg, #f8f9fa 0%, #e8eaf6 100%);
}
.container {
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.gr-form {
border-radius: 8px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.gr-radio-group {
background: white;
padding: 12px;
border-radius: 8px;
}
.gr-accordion {
border-radius: 8px;
overflow: hidden;
}
/* Force white text in buttons */
button.primary-btn span {
color: white !important;
}
.gr-button span {
color: white !important;
}
"""
with gr.Blocks(title="Deradh Virtual Try-On", css=custom_css) as demo:
gr.Markdown(
"""
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
<div style="margin: 1rem 0;">
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
Visit Deradh.com
</a>
</div>
</div>
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
Experience the future of fashion with our AI-powered virtual try-on technology, Every user will get 2-3 Free trials per day
</div>
"""
)
with gr.Row():
with gr.Column(scale=1, min_width="auto"):
with gr.Row():
image_path = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image = gr.ImageEditor(
interactive=True,
label="Upload Your Photo",
type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width="auto"):
cloth_image = gr.Image(
interactive=True,
label="Select Garment",
type="filepath"
)
with gr.Column(scale=1, min_width="auto"):
gr.Markdown(
'''
<div style="color: white; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
padding: 1.2rem; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="margin: 0 0 0.8rem 0; color: white;">For Best Performance:</h3>
<ol style="margin: 0; padding-left: 1.2rem;">
<li>Stand in front of a plain, contrasting background.</li>
<li>Ensure your entire body is visible in the frame.</li>
<li>Upload the highest quality image possible.</li>
<li>Avoid cluttered or low-light environments.</li>
<li>Wear minimal accessories for accurate results.</li>
</ol>
</div>
'''
)
cloth_type = gr.Radio(
label="(Important) Garment Type",
choices=["upper", "lower", "overall"],
# value="upper",
)
submit = gr.Button("Try On", elem_classes="primary-btn", elem_id="submit_btn")
gr.Markdown(
'''
<div style="text-align: center; color: #1a237e; font-weight: 500; margin: 1rem 0;
padding: 0.8rem; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
Important: Please wait after clicking Try On - Processing may take a moment
</div>
'''
)
# gr.Markdown(
# '''
# <div style="background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%);
# color: white; padding: 1.2rem; border-radius: 8px; margin-top: 1rem;
# box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
# <h3 style="margin: 0 0 0.8rem 0; color: white;">Advanced Settings:</h3>
# <ul style="margin: 0; padding-left: 1.2rem;">
# <li>Increase Steps for higher quality</li>
# <li>Adjust CFG for color intensity</li>
# <li>Change Seed for different variations</li>
# </ul>
# </div>
# '''
# )
with gr.Accordion("Developer Options", open=False):
num_inference_steps = gr.Slider(
label="Quality Steps",
minimum=10,
maximum=100,
step=5,
value=50
)
guidance_scale = gr.Slider(
label="Style Intensity",
minimum=0.0,
maximum=7.5,
step=0.5,
value=2.5
)
seed = gr.Slider(
label="Variation Seed",
minimum=-1,
maximum=10000,
step=1,
value=42
)
show_type = gr.Radio(
label="Display Options",
choices=["result only", "input & result", "input & mask & result"],
value="input & result",
)
with gr.Column(scale=2, min_width="auto"):
result_image = gr.Image(
interactive=False,
label="Virtual Try-On Result"
)
with gr.Row():
root_path = "resource/demo/example"
with gr.Column():
men_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "men", _)
for _ in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path,
label="Sample Photos - Men",
)
women_exm = gr.Examples(
examples=[
os.path.join(root_path, "person", "women", _)
for _ in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path,
label="Sample Photos - Women",
)
with gr.Column():
condition_upper_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", _)
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image,
label="Sample Upper Garments",
)
condition_overall_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", _)
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image,
label="Sample Full Outfits",
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", _)
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image,
label="Style Reference Photos",
)
image_path.change(
person_example_fn,
inputs=image_path,
outputs=person_image
)
submit.click(
submit_function,
[
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type,
],
result_image,
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio() |