File size: 3,982 Bytes
e0c1514
 
 
 
 
 
 
 
b4432a0
 
 
 
e0c1514
 
 
 
 
 
766f359
58fc0c2
766f359
 
e0c1514
 
b52703a
bce68e6
766f359
e0c1514
 
6f1d0eb
e0c1514
766f359
 
 
e0c1514
 
3b9debd
e0c1514
 
3b9debd
766f359
e0c1514
8f641db
f0c1424
e0c1514
766f359
e0c1514
 
 
 
 
766f359
2cae516
7159bbe
 
 
3b9debd
 
7159bbe
 
e0c1514
7c39bf5
 
e0c1514
3b9debd
e0c1514
 
766f359
e0c1514
 
 
 
 
 
 
 
7c39bf5
bce68e6
766f359
 
0c3e3fb
ecc5750
e0c1514
 
766f359
e0c1514
 
7c39bf5
 
a888933
 
 
 
 
 
 
a22f91a
a888933
 
 
766f359
57cdeb5
766f359
a888933
766f359
a888933
 
 
5662bb5
a888933
 
 
 
 
5f5c021
4363c0a
3b9debd
e0c1514
4a79b1a
766f359
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import streamlit as st
import torch
import torchaudio
from audiocraft.models import MusicGen
import os
import numpy as np
import base64

genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", 
          "Lofi", "Chillpop","Country","R&G", "Folk","Heavy Metal", 
          "EDM", "Soil", "Funk","Reggae", "Disco", "Punk Rock", "House",
          "Techno","Indie Rock", "Grunge", "Ambient","Gospel", "Latin Music","Grime" ,"Trap", "Psychedelic Rock"  ]

@st.cache_resource()
def load_model():
    model = MusicGen.get_pretrained('facebook/musicgen-small')
    return model

def generate_music_tensors(descriptions, duration: int):
    model = load_model()
    # model = load_model().to('cpu')


    model.set_generation_params(
        use_sampling=True,
        top_k=250,
        duration=duration
    )

    with st.spinner("Generating Music..."):
        output = model.generate(
            descriptions=descriptions,
            progress=True,
            return_tokens=True
        )

    st.success("Music Generation Complete!")
    return output


def save_audio(samples: torch.Tensor):
    sample_rate = 30000
    save_path = "audio_output" 
    assert samples.dim() == 2 or samples.dim() == 3

    samples = samples.detach().cpu()
    if samples.dim() == 2:
        samples = samples[None, ...]

    for idx, audio in enumerate(samples):
        audio_path = os.path.join(save_path, f"audio_{idx}.wav")
        torchaudio.save(audio_path, audio, sample_rate)

def get_binary_file_downloader_html(bin_file, file_label='File'):
    with open(bin_file, 'rb') as f:
        data = f.read()
    bin_str = base64.b64encode(data).decode()
    href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
    return href

st.set_page_config(
    page_icon= "musical_note",
    page_title= "Music Gen"
)

def main():
    with st.sidebar:
        st.header("""⚙️Generate Music ⚙️""",divider="rainbow")
        st.text("")
        st.subheader("1. Enter your music description.......")
        bpm = st.number_input("Enter Speed in BPM", min_value=60)

        text_area = st.text_area('Ex : 80s rock song with guitar and drums')
        st.text('')
        # Dropdown for genres
        selected_genre = st.selectbox("Select Genre", genres)
        
        st.subheader("2. Select time duration (In Seconds)")
        time_slider = st.slider("Select time duration (In Seconds)", 0, 60, 10)
        # time_slider = st.slider("Select time duration (In Minutes)", 0,300,10, step=1)


    st.title("""🎵 Song Lab AI 🎵""")
    st.text('')
    left_co,right_co = st.columns(2)
    left_co.write("""Music Generation through a prompt""")
    left_co.write(("""PS : First generation may take some time ......."""))
    
    if st.sidebar.button('Generate !'):
        with left_co:
            st.text('')
            st.text('')
            st.text('')
            st.text('')
            st.text('')
            st.text('')
            st.text('\n\n')
            st.subheader("Generated Music")

            # Generate audio
            # descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(5)]
            descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(1)]  # Change the batch size to 1
            music_tensors = generate_music_tensors(descriptions, time_slider)

             # Only play the full audio for index 0
            idx = 0
            music_tensor = music_tensors[idx]
            save_music_file = save_audio(music_tensor)
            audio_filepath = f'audio_output/audio_{idx}.wav'
            audio_file = open(audio_filepath, 'rb')
            audio_bytes = audio_file.read()

            # Play the full audio
            st.audio(audio_bytes, format='audio/wav')
            st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)


if __name__ == "__main__":
    main()