Spaces:
Running
Running
import os | |
os.system('pip install modelscope') | |
os.system('pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html') | |
os.system('pip install skimage') | |
import json | |
from PIL import Image | |
from skimage import io | |
import gradio as gr | |
from modelscope_studio import encode_image, decode_image, call_demo_service | |
yes, no = "是", "否" | |
def get_size(h, w, max_size=720): | |
if min(h, w) > max_size: | |
if h > w: | |
h, w = int(max_size * h / w), max_size | |
else: | |
h, w = max_size, int(max_size * w / h) | |
return h, w | |
def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image: | |
if img is None: | |
return None | |
w, h = img.size | |
h, w = get_size(h, w, 512) | |
img = img.resize((w, h)) | |
input_url = encode_image(img) | |
res_url = input_url | |
# image-denoising (optional) | |
if image_denoise_option == yes: | |
data = { | |
"task": "image-denoising", | |
"inputs": [ | |
res_url | |
], | |
"parameters":{}, | |
"urlPaths": { | |
"inUrls": [ | |
{ | |
"value": res_url, | |
"fileType": "png", | |
"type": "image", | |
"displayType": "ImgUploader", | |
"validator": { | |
"accept": "*.jpeg,*.jpg,*.png", | |
"max_resolution": "5000*5000", | |
"max_size": "10m" | |
}, | |
"name": "", | |
"title": "" | |
} | |
], | |
"outUrls": [ | |
{ | |
"outputKey": "output_img", | |
"type": "image" | |
} | |
] | |
} | |
} | |
result = call_demo_service( | |
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data)) | |
print(f"image-denoising result: {result}") | |
res_url = result['data']['output_img'] | |
# image-colorization (optional) | |
if colorization_option == yes: | |
data = { | |
"task": "image-colorization", | |
"inputs": [ | |
res_url | |
], | |
"parameters":{}, | |
"urlPaths": { | |
"inUrls": [ | |
{ | |
"value": res_url, | |
"fileType": "png", | |
"type": "image", | |
"displayType": "ImgUploader", | |
"validator": { | |
"accept": "*.jpeg,*.jpg,*.png", | |
"max_size": "10m", | |
"max_resolution": "5000*5000", | |
}, | |
"name": "", | |
"title": "" | |
} | |
], | |
"outUrls": [ | |
{ | |
"outputKey": "output_img", | |
"type": "image" | |
} | |
] | |
} | |
} | |
result = call_demo_service( | |
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data)) | |
print(f"image-colorization result: {result}") | |
res_url = result['data']['output_img'] | |
# image-portrait-enhancement | |
data = { | |
"task": "image-portrait-enhancement", | |
"inputs": [ | |
res_url | |
], | |
"parameters":{}, | |
"urlPaths": { | |
"inUrls": [ | |
{ | |
"value": res_url, | |
"fileType": "png", | |
"type": "image", | |
"displayType": "ImgUploader", | |
"validator": { | |
"accept": "*.jpeg,*.jpg,*.png", | |
"max_size": "10M", | |
"max_resolution": "2000*2000", | |
}, | |
"name": "", | |
"title": "" | |
} | |
], | |
"outUrls": [ | |
{ | |
"outputKey": "output_img", | |
"type": "image" | |
} | |
] | |
} | |
} | |
result = call_demo_service( | |
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data)) | |
print(f"image-portrait-enhancement result: {result}") | |
res_url = result['data']['output_img'] | |
# image-color-enhancement (optional) | |
if color_enhance_option == yes: | |
data = { | |
"task": "image-color-enhancement", | |
"inputs": [ | |
res_url | |
], | |
"parameters":{}, | |
"urlPaths": { | |
"inUrls": [ | |
{ | |
"value": res_url, | |
"fileType": "png", | |
"type": "image", | |
"displayType": "ImgUploader", | |
"validator": { | |
"accept": "*.jpeg,*.jpg,*.png", | |
"max_size": "10m", | |
"max_resolution": "5000*5000", | |
}, | |
"name": "", | |
"title": "" | |
} | |
], | |
"outUrls": [ | |
{ | |
"outputKey": "output_img", | |
"type": "image" | |
} | |
] | |
} | |
} | |
result = call_demo_service( | |
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data)) | |
print(f"image-color-enhancement result: {result}") | |
res_url = result['data']['output_img'] | |
res_img = decode_image(res_url) | |
return res_img | |
title = "AI老照片修复" | |
description = ''' | |
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~ | |
''' | |
examples = [[os.path.dirname(__file__) + './images/input1.jpg'], | |
[os.path.dirname(__file__) + './images/input2.jpg'], | |
[os.path.dirname(__file__) + './images/input3.jpg'], | |
[os.path.dirname(__file__) + './images/input4.jpg'], | |
[os.path.dirname(__file__) + './images/input5.jpg']] | |
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}" | |
with gr.Blocks(title=title, css=css_style) as demo: | |
gr.HTML(''' | |
<div style="text-align: center; max-width: 720px; margin: 0 auto;"> | |
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" /> | |
</div> | |
''') | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
img_input = gr.components.Image(label="图片", type="pil") | |
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes) | |
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no) | |
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no) | |
btn = gr.Button("一键修复") | |
with gr.Column(scale=3): | |
img_output = gr.components.Image(label="图片", type="pil").style(height=600) | |
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option] | |
btn.click(fn=inference, inputs=inputs, outputs=img_output) | |
gr.Examples(examples, inputs=img_input) | |
demo.launch() |