Spaces:
Sleeping
Sleeping
File size: 7,364 Bytes
46186d0 d047c3e 0bc635f 40eeec4 d047c3e 46186d0 d047c3e 46186d0 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 46186d0 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 d047c3e 187e418 46186d0 187e418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import streamlit as st
import torch
from typing import List, Dict, Any
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import numpy as np
class AdvancedRAGChatbot:
def __init__(self,
embedding_model: str = "BAAI/bge-large-en-v1.5",
llm_model: str = "llama-3.3-70b-versatile",
temperature: float = 0.7,
retrieval_k: int = 5):
"""Initialize the Advanced RAG Chatbot with configurable parameters"""
self.embeddings = self._configure_embeddings(embedding_model)
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
self.llm = self._configure_llm(llm_model, temperature)
self.vector_db = self._initialize_vector_database()
self.retriever = self._configure_retriever(retrieval_k)
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
self.qa_chain = self._create_conversational_retrieval_chain()
def _configure_embeddings(self, model_name: str):
"""Configure embeddings with normalization"""
encode_kwargs = {'normalize_embeddings': True, 'show_progress_bar': True}
return HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
def _configure_llm(self, model_name: str, temperature: float):
"""Configure the Language Model with Groq"""
return ChatGroq(
model_name=model_name,
temperature=temperature,
max_tokens=4096,
streaming=True
)
def _initialize_vector_database(self, persist_directory: str = 'vector_db'):
"""Initialize the vector database"""
return Chroma(persist_directory=persist_directory, embedding_function=self.embeddings)
def _configure_retriever(self, retrieval_k: int):
"""Configure the document retriever"""
return self.vector_db.as_retriever(
search_kwargs={
"k": retrieval_k,
"search_type": "mmr",
"fetch_k": 20
}
)
def _create_conversational_retrieval_chain(self):
"""Create the conversational retrieval chain"""
template = """
You are a helpful AI assistant. Provide a precise and comprehensive answer
based on the context and chat history.
Context: {context}
Chat History: {chat_history}
Question: {question}
Helpful Answer:"""
prompt = ChatPromptTemplate.from_template(template)
return ConversationalRetrievalChain.from_llm(
llm=self.llm,
retriever=self.retriever,
memory=self.memory,
combine_docs_chain_kwargs={'prompt': prompt},
return_source_documents=True
)
def process_query(self, query: str) -> Dict[str, Any]:
"""Process the user query with multiple NLP techniques"""
# Advanced NLP Analysis
semantic_score = self.semantic_model.encode([query])[0]
sentiment_result = self.sentiment_analyzer(query)[0]
entities = self.ner_pipeline(query)
# RAG Query Processing
result = self.qa_chain({"question": query})
return {
"response": result['answer'],
"source_documents": result.get('source_documents', []),
"semantic_similarity": semantic_score.tolist(),
"sentiment": sentiment_result,
"named_entities": entities
}
def main():
# Page Configuration
st.set_page_config(
page_title="Advanced RAG Chatbot",
page_icon="π§ ",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar Configuration
with st.sidebar:
st.header("π§ Chatbot Settings")
st.markdown("Customize your AI assistant's behavior")
# Model Configuration
embedding_model = st.selectbox(
"Embedding Model",
["BAAI/bge-large-en-v1.5", "sentence-transformers/all-MiniLM-L6-v2"]
)
temperature = st.slider("Creativity Level", 0.0, 1.0, 0.7, help="Higher values make responses more creative")
retrieval_k = st.slider("Context Depth", 1, 10, 5, help="Number of reference documents to retrieve")
# Additional Controls
st.divider()
reset_chat = st.button("π Reset Conversation")
# Initialize Chatbot
chatbot = AdvancedRAGChatbot(
embedding_model=embedding_model,
temperature=temperature,
retrieval_k=retrieval_k
)
# Main Chat Interface
st.title("π€ Advanced RAG Chatbot")
# Two-column layout
col1, col2 = st.columns(2)
with col1:
st.header("Input")
# Chat input with placeholder
user_input = st.text_area(
"Ask your question",
placeholder="Enter your query here...",
height=250
)
# Submit button
submit_button = st.button("Send Query", type="primary")
with col2:
st.header("Response")
# Response container
if submit_button and user_input:
with st.spinner("Processing your query..."):
try:
response = chatbot.process_query(user_input)
# Bot Response
st.markdown("#### Bot's Answer")
st.write(response['response'])
# Sentiment Analysis
st.markdown("#### Sentiment Analysis")
sentiment = response['sentiment']
st.metric(
label="Sentiment",
value=sentiment['label'],
delta=f"{sentiment['score']:.2%}"
)
# Named Entities
st.markdown("#### Detected Entities")
for entity in response['named_entities']:
st.text(f"{entity['word']} ({entity['entity']})")
# Source Documents
if response['source_documents']:
st.markdown("#### Reference Documents")
for i, doc in enumerate(response['source_documents'], 1):
with st.expander(f"Document {i}"):
st.write(doc.page_content)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.info("Submit a query to see the AI's response")
if __name__ == "__main__":
main() |