Spaces:
Sleeping
Sleeping
File size: 5,086 Bytes
c712316 873150b c712316 849b9bc c712316 873150b c712316 e359f1f c712316 873150b c712316 10fe79e c712316 0be1ea7 2c37d62 29f5209 c712316 873150b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import requests
from io import StringIO
from Bio import SeqIO
import os
import time
import pandas as pd
import intervaltree
def find_domains(email, sequence, name):
# send request to interproscan api
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'text/plain',
}
data= {
'email': email,
'stype': 'p',
'sequence': f'{sequence}'}
job_id_response = requests.post('https://www.ebi.ac.uk/Tools/services/rest/iprscan5/run', headers=headers, data=data)
job_id = job_id_response.text
# get results
headers = {
'Accept': 'application/json',
}
job_result_url = f'https://www.ebi.ac.uk/Tools/services/rest/iprscan5/result/{job_id}/json'
json_output = None
entries = dict()
with requests.Session() as s:
# try 10 times if not successful print error
c=0
while c<10:
job_result_response = s.get(job_result_url, headers=headers)
if job_result_response.status_code == 200:
json_output= job_result_response.json()['results'][0]
print('InterProScan job done')
break
else:
time.sleep(60)
c+=1
if json_output is None:
result_text = 'InterProScan job failed'
return [result_text, job_id, job_result_response.text]
else:
for elem in json_output['matches']:
entry = elem['signature']['entry']
location_list = [f"{i['start']}-{i['end']}" for i in elem['locations']]
if type(entry) == dict and entry['type'] == 'DOMAIN':
if entry['accession'] not in entries:
entries[entry['accession']] = {
'name': entry['name'],
# add locations as a list
'locations': location_list
}
else:
try:
entries[entry['accession']]['locations'].extend(location_list)
except AttributeError:
entries[entry['accession']]['locations'] = entries[entry['accession']]['locations'].split(' ')
entries[entry['accession']]['locations'] = [i for i in entries[entry['accession']]['locations'] if i]
entries[entry['accession']]['locations'].extend(location_list)
entries[entry['accession']]['locations'] = list(set(entries[entry['accession']]['locations']))
if len(entries[entry['accession']]['locations']) > 1:
entries[entry['accession']]['locations'] = merge_locations(entries[entry['accession']]['locations'])
entries[entry['accession']]['locations'] = sorted([i.split('-') for i in entries[entry['accession']]['locations']], key=lambda x: (int(x[0]), int(x[1])))
entries[entry['accession']]['locations'] = ['-'.join(i) for i in entries[entry['accession']]['locations']]
if entries:
result_text = 'Domains found.'
# create domains dataframe
domains_df = pd.DataFrame.from_dict(entries, orient='index').reset_index()
domains_df['protein_name'] = name
domains_df = domains_df[['protein_name', 'index', 'name', 'locations']]
domains_df.columns = ['protein_name', 'domain_accession', 'domain_name', 'domain_locations']
return [result_text, domains_df]
else:
result_text = 'No domains found.'
return [result_text]
# generate protein function predictions based on domain2go mappings
def merge_locations(locations):
temp_locs = [i.split('-') for i in locations]
tree = intervaltree.IntervalTree.from_tuples(temp_locs)
tree.merge_overlaps()
merged_locations = ['-'.join([i.begin, i.end]) for i in tree]
return merged_locations
def generate_function_predictions(domains_df, mapping_path):
# read domain2go mappings
domain2go_df = pd.read_csv(os.path.join(mapping_path, 'finalized_domain2go_mappings.txt'))
print('Domain2GO mappings loaded')
# merge domain2go mappings with domains found in protein sequence
merged_df = pd.merge(domains_df, domain2go_df, left_on='domain_accession', right_on='Interpro')
print('Function predictions generated.')
# if merged_df is empty return
if merged_df.empty:
result_text = 'No function predictions found.'
return [result_text]
else:
merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
merged_df = merged_df[['protein_name', 'GO', 'GO_name', 'GO_aspect', 'domain_locations', 's', 'domain_accession', 'domain_name',]]
merged_df.columns = ['protein_name', 'GO_ID', 'GO_term', 'GO_category', 'sequence_region', 'probability', 'domain_accession', 'domain_name',]
# save protein function predictions
protein_name = domains_df['protein_name'].iloc[0]
result_text= 'Function predictions found.'
return [result_text, merged_df] |