Spaces:
Running
Running
File size: 28,826 Bytes
89677ab 92ed479 da1c3d0 7419d2a c520c43 3e01b83 c520c43 24c5c6a 8f4b741 24c5c6a 301ba09 8f4b741 301ba09 2f8d670 abddf21 8f4b741 301ba09 e021e3c 8f4b741 e021e3c 8b87470 fb8112c ec82ae1 867722f ec82ae1 301ba09 24c5c6a abddf21 301ba09 a38fdcd 301ba09 abddf21 24c5c6a 301ba09 7419d2a e8c701e 7419d2a da1c3d0 abddf21 2643ed2 abddf21 da1c3d0 8f4b741 da1c3d0 fcbba9e 95173ca abddf21 fcbba9e da1c3d0 eb75910 8f4b741 eb75910 8f4b741 eb75910 8f4b741 eb75910 8f4b741 abddf21 301ba09 2f8d670 abddf21 301ba09 0ab12f7 301ba09 dcd5e55 301ba09 dcd5e55 301ba09 2f8d670 301ba09 8f00c3f 301ba09 8f00c3f 3a2340f 8f00c3f abddf21 301ba09 eb75910 301ba09 abddf21 301ba09 dbed3d3 fb8112c 8b87470 dbed3d3 fb8112c 8b87470 fb8112c 2f8d670 dbed3d3 9e796bc 301ba09 fb8112c 301ba09 8f4b741 301ba09 8f4b741 301ba09 8f4b741 42e2260 8b87470 b2ca546 1e273b2 301ba09 9a145bd 8f4b741 7d697ba 8f4b741 7d697ba 301ba09 8f4b741 301ba09 8f4b741 301ba09 8f4b741 0ab12f7 8f4b741 0ab12f7 8f4b741 0ab12f7 8f4b741 f465b10 0ab12f7 8f4b741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import os
import streamlit as st
from rapidfuzz import process
import random
# with st.spinner("Initializing the environment... This may take up to 10 minutes at the start of each session."):
# # Create a temporary placeholder for the message
# loading_placeholder = st.empty()
# # Show the info message only while the spinner is active
# loading_placeholder.info("""
# **Note:** This initialization is required at the start of each session.
# Once the app is ready, you can run multiple predictions without re-initializing by clicking the **Reset** button in the sidebar.
# """)
# # Run setup script if not already executed
# if not os.path.exists(".setup_done"):
# start_time = time.time()
# os.system("bash setup.sh")
# end_time = time.time()
# print(f"Environment prepared in {end_time - start_time:.2f} seconds")
# with open(".setup_done", "w") as f:
# f.write("done")
# # ❌ Remove the info message after initialization is complete
# loading_placeholder.empty()
from run_prothgt_app import *
from visualize_kg import *
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
# Initialize session state variables
if 'predictions_df' not in st.session_state:
st.session_state.predictions_df = None
if 'heterodata' not in st.session_state:
st.session_state.heterodata = None
if 'submitted' not in st.session_state:
st.session_state.submitted = False
if 'previous_inputs' not in st.session_state:
st.session_state.previous_inputs = None
if 'generating_predictions' not in st.session_state:
st.session_state.generating_predictions = False
if 'protein_visualizations' not in st.session_state:
st.session_state.protein_visualizations = {}
def reset_prediction_state():
st.session_state.generating_predictions = False
st.session_state.submitted = False
st.session_state.predictions_df = None
st.session_state.previous_inputs = None
# Clean up visualization files
if 'protein_visualizations' in st.session_state:
for viz_info in st.session_state.protein_visualizations.values():
try:
os.unlink(viz_info['path'])
except:
pass
st.session_state.protein_visualizations = {}
def set_generating_predictions():
st.session_state.generating_predictions = True
st.session_state.submitted = True
with st.expander("🚀 Upcoming Features"):
st.info("""
We are actively working on enhancing ProtHGT application with new capabilities:
- **Real-time data retrieval for new proteins**: Currently, ProtHGT can only generate predictions for proteins that already exist in our knowledge graph. We are developing a new feature that will allow users to **predict functions for entirely new proteins starting from their sequences**. This will work by **retrieving relevant relationship data in real time from external source databases** (e.g., UniProt, STRING, and other biological repositories). The system will dynamically construct a knowledge graph for the query protein, incorporating its interactions, domains, pathways, and other biological associations before running function prediction. This approach will enable ProtHGT to analyze newly discovered or less-studied proteins even if they are not pre-annotated in our dataset.
- **Expanded embedding options**: Currently, this application represents proteins using **TAPE embeddings**, which serve as the initial numerical representations of protein sequences before being processed in the heterogeneous graph model. We are working on integrating **ProtT5** and **ESM-2** as alternative initial embeddings, allowing users to choose different sequence representations that may enhance performance for specific tasks. A detailed comparison of how these embeddings influence function prediction accuracy will be included in our upcoming publication.
- **Knowledge graph visualization for interpretability**: To improve model explainability, we are developing an interactive **knowledge graph visualization** feature. This will allow users to explore the biological relationships that contributed to ProtHGT’s predictions for a given protein. Users will be able to inspect **protein interactions, GO annotations, domains, pathways, and other key connections** in a structured graphical format, making it easier to interpret and validate predictions.
Stay tuned for updates and future publications!
""")
with st.sidebar:
disabled = st.session_state.generating_predictions
st.markdown("""
<style>
.title {
font-size: 35px;
font-weight: bold;
color: #424242;
margin-bottom: 0px;
}
.subtitle {
font-size: 20px;
color: #424242;
margin-bottom: 20px;
line-height: 1.5;
}
.badges {
margin-top: 10px;
margin-bottom: 20px;
}
</style>
<div class="title">ProtHGT</div>
<div class="subtitle">Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models</div>
<div class="badges">
<a href="https://github.com/HUBioDataLab/ProtHGT">
<img src="https://img.shields.io/badge/GitHub-black?logo=github" alt="github-repository">
</a>
</div>
""", unsafe_allow_html=True)
available_proteins = get_available_proteins()
if 'example_proteins' not in st.session_state:
st.session_state.example_proteins = random.sample(available_proteins, 5)
selected_proteins = []
# Add protein selection methods
selection_method = st.radio(
"Choose input method:",
["Use example query", "Search proteins", "Upload protein ID file"],
disabled=disabled
)
if selection_method == "Use example query":
selected_proteins = st.session_state.example_proteins
st.write(f"Selected proteins:")
st.markdown(
f"""
<div style="
height: 150px;
overflow-y: scroll;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
margin-bottom: 16px;
background-color: white;">
{'<br>'.join(selected_proteins)}
</div>
""",
unsafe_allow_html=True
)
elif selection_method == "Search proteins":
# User enters search term
search_query = st.text_input(
"1\\. Start typing a protein ID (at least 3 characters) and press Enter to see search results in the dropdown menu below (2)",
"",
disabled=disabled
)
# Initialize selected_proteins in session state if not exists
if 'selected_proteins_search' not in st.session_state:
st.session_state.selected_proteins_search = []
# Apply fuzzy search only if query length is >= 3
filtered_proteins = []
if len(search_query) >= 3:
# Case-insensitive search by converting query and proteins to lowercase
matches = process.extract(
search_query.upper(),
{p: p.upper() for p in available_proteins},
limit=50
)
filtered_proteins = [match[0] for match in matches] # Show top 50 matches
with st.container():
# Include previously selected proteins in options
all_options = list(set(filtered_proteins + st.session_state.selected_proteins_search))
selected_proteins = st.multiselect(
"2\\. Select proteins from search results",
options=all_options,
default=st.session_state.selected_proteins_search,
placeholder="Start typing a protein ID above (1) to see search results...",
max_selections=100,
disabled=disabled,
key="protein_selector"
)
# Update session state with current selection
st.session_state.selected_proteins_search = selected_proteins
# Apply custom CSS to make container scrollable
st.markdown("""
<style>
div[data-testid="stMultiSelect"] div:nth-child(2) {
max-height: 250px;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
else: # Upload file option
uploaded_file = st.file_uploader(
"Upload a text file with UniProt IDs (one per line, max 100)*",
type=['txt'],
disabled=disabled
)
if uploaded_file:
protein_list = [line.strip() for line in uploaded_file.read().decode('utf-8').splitlines()]
# Remove empty lines and duplicates
protein_list = list(filter(None, protein_list))
protein_list = list(dict.fromkeys(protein_list))
# Check for proteins not in available_proteins
proteins_not_found = [p for p in protein_list if p not in available_proteins]
# Filter to keep only available proteins
protein_list = [p for p in protein_list if p in available_proteins]
if len(protein_list) > 100:
st.error("Please upload a file with maximum 100 protein IDs.")
selected_proteins = []
else:
selected_proteins = protein_list
st.write(f"Loaded {len(selected_proteins)} proteins")
if proteins_not_found:
st.warning(f"""
The following proteins were not found in our input knowledge graph and have been discarded:
""")
with st.expander("View Discarded Proteins"):
# Create scrollable container with fixed height
st.markdown(
f"""
<div style="
height: 150px;
overflow-y: scroll;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
margin-bottom: 16px;
background-color: white;">
{'<br>'.join(proteins_not_found)}
</div>
""",
unsafe_allow_html=True
)
st.warning(f"""
Currently, our system can only generate predictions for proteins that are already included in our knowledge graph. **Real-time retrieval of relationship data from external source databases is not yet supported.**
We are actively working on integrating this capability in future updates. Stay tuned!
""")
if selected_proteins:
st.write(f"Total proteins selected: {len(selected_proteins)}")
# Add download button
proteins_text = '\n'.join(selected_proteins)
st.download_button(
label="Download Selected Proteins List",
data=proteins_text,
file_name="selected_proteins.txt",
mime="text/plain",
key="download_selected_proteins"
)
# Add GO category selection
go_category_options = {
'All Categories': None,
'Molecular Function': 'GO_term_F',
'Biological Process': 'GO_term_P',
'Cellular Component': 'GO_term_C'
}
selected_go_category = st.selectbox(
"Select GO Category for predictions",
options=list(go_category_options.keys()),
help="Choose which GO category to generate predictions for. Selecting 'All Categories' will generate predictions for all three categories.",
disabled=disabled
)
if selected_proteins and selected_go_category:
button_disabled = st.session_state.submitted
# Add custom CSS for red button
st.markdown("""
<style>
div.stButton > button:first-child {
background-color: #ff4b4b;
color: white;
}
div.stButton > button:hover {
background-color: #ff0000;
color: white;
}
div.stButton > button:focus {
background-color: #ff0000;
color: white;
}
</style>
""", unsafe_allow_html=True)
if st.button("Generate Predictions",
disabled=button_disabled,
key="generate_predictions",
on_click=set_generating_predictions):
pass
# Create a tuple of current inputs to track changes
current_inputs = (tuple(selected_proteins), selected_go_category)
# Check if inputs have changed
if st.session_state.previous_inputs != current_inputs:
st.session_state.predictions_df = None
st.session_state.submitted = False
st.session_state.previous_inputs = current_inputs
st.warning("⚠️ Due to memory and computational constraints, the maximum number of proteins that can be processed at once is limited to 100 proteins. For larger datasets, please consider running the model locally using our [GitHub repository](https://github.com/HUBioDataLab/ProtHGT).")
if st.session_state.submitted:
with st.spinner("Generating predictions..."):
# Generate predictions only if not already in session state
if st.session_state.predictions_df is None:
# Load model config from JSON file
import json
import os
# Define data directory path
data_dir = "data"
models_dir = os.path.join(data_dir, "models")
# Load model configuration
model_config_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-config-molecular-function.yaml"),
'GO_term_P': os.path.join(models_dir, "prothgt-config-biological-process.yaml"),
'GO_term_C': os.path.join(models_dir, "prothgt-config-cellular-component.yaml")
}
# Paths for model and data
model_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-model-molecular-function.pt"),
'GO_term_P': os.path.join(models_dir, "prothgt-model-biological-process.pt"),
'GO_term_C': os.path.join(models_dir, "prothgt-model-cellular-component.pt")
}
# Get the selected GO category
go_category = go_category_options[selected_go_category]
# If a specific category is selected, use that model path
if go_category:
model_config_paths = [model_config_paths[go_category]]
model_paths = [model_paths[go_category]]
go_categories = [go_category]
else:
model_config_paths = [model_config_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
model_paths = [model_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C']
# Generate predictions
heterodata, predictions_df = generate_prediction_df(
protein_ids=selected_proteins,
model_paths=model_paths,
model_config_paths=model_config_paths,
go_category=go_categories
)
st.session_state.heterodata = heterodata
st.session_state.predictions_df = predictions_df
# Reset only the generating_predictions flag to release the sidebar
st.session_state.generating_predictions = False
st.rerun()
# Display and filter predictions
st.success("Predictions generated successfully!")
# tabs for predictions and visualizations
predictions_tab, kg_viz_tab = st.tabs(["View Predictions", "View Knowledge Graphs"])
with predictions_tab:
st.markdown("### Filter and View Predictions")
# Create filters
col1, col2, col3, col4 = st.columns(4)
with col1:
# Extract UniProt IDs from URLs for the selectbox
uniprot_ids = st.session_state.predictions_df['UniProt_ID'].unique().tolist()
# Protein filter
selected_protein = st.selectbox(
"Filter by Protein",
options=['All'] + sorted(uniprot_ids)
)
with col2:
# GO category filter
selected_category = st.selectbox(
"Filter by GO Category",
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist())
)
with col3:
# GO term filter
go_term_filter = st.text_input(
"Filter by GO Term ID",
placeholder="e.g., GO:0003674",
help="Enter a GO term ID to filter results"
).strip()
with col4:
# Probability threshold range slider
probability_range = st.slider(
"Probability Range",
min_value=0.0,
max_value=1.0,
value=(0.5, 1.0), # (min, max) default values
step=0.05
)
min_probability_threshold, max_probability_threshold = probability_range
# Filter the dataframe using session state data
filtered_df = st.session_state.predictions_df.copy()
if selected_protein != 'All':
filtered_df = filtered_df[filtered_df['UniProt_ID'].str.contains(selected_protein)]
if selected_category != 'All':
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category]
if go_term_filter:
filtered_df = filtered_df[filtered_df['GO_ID'] == go_term_filter]
filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) &
(filtered_df['Probability'] <= max_probability_threshold)]
filtered_df['UniProt_ID'] = [f"https://www.uniprot.org/uniprotkb/{pid}/entry" for pid in filtered_df['UniProt_ID']]
filtered_df['GO_ID'] = [f"https://www.ebi.ac.uk/QuickGO/term/{go_id}" for go_id in filtered_df['GO_ID']]
# Custom CSS to increase table width and improve layout
st.markdown("""
<style>
.stDataFrame {
width: 100%;
}
.stDataFrame > div {
width: 100%;
}
.stDataFrame [data-testid="stDataFrameResizable"] {
width: 100%;
min-width: 100%;
}
.pagination-info {
font-size: 14px;
color: #666;
padding: 10px 0;
}
.page-controls {
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Add pagination controls
col1, col2, col3 = st.columns([2, 1, 2])
with col2:
rows_per_page = st.selectbox("Rows per page", [50, 100, 200, 500], index=1)
total_rows = len(filtered_df)
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Initialize page number in session state
if "page_number" not in st.session_state:
st.session_state.page_number = 0
# Calculate start and end indices for current page
start_idx = st.session_state.page_number * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
st.dataframe(
filtered_df.iloc[start_idx:end_idx],
hide_index=True,
use_container_width=True,
column_config={
"UniProt_ID": st.column_config.LinkColumn(
"UniProt ID",
help="Click to view protein in UniProt",
validate="^https://www\\.uniprot\\.org/uniprotkb/[A-Z0-9]+/entry$",
display_text="^https://www\\.uniprot\\.org/uniprotkb/([A-Z0-9]+)/entry$"
),
"GO_ID": st.column_config.LinkColumn(
"GO ID",
help="Click to view GO term in QuickGO",
validate="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/GO:[0-9]+$",
display_text="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/(GO:[0-9]+)$"
),
"Probability": st.column_config.ProgressColumn(
"Probability",
format="%.2f",
min_value=0,
max_value=1,
),
"Protein": st.column_config.TextColumn(
"Protein",
help="Protein Name",
),
"GO_category": st.column_config.TextColumn(
"GO Category",
help="Gene Ontology Category",
),
"GO_term": st.column_config.TextColumn(
"GO Term",
help="Gene Ontology Term Name",
),
}
)
# Pagination controls with better layout
col1, col2, col3 = st.columns([1, 3, 1])
with col1:
if st.button("Previous", disabled=st.session_state.page_number == 0):
st.session_state.page_number -= 1
st.rerun()
with col2:
st.markdown(f"""
<div class="pagination-info" style="text-align: center">
Page {st.session_state.page_number + 1} of {total_pages}<br>
Showing rows {start_idx + 1} to {end_idx} of {total_rows}
</div>
""", unsafe_allow_html=True)
with col3:
if st.button("Next", disabled=st.session_state.page_number >= total_pages - 1):
st.session_state.page_number += 1
st.rerun()
downloadable_df = filtered_df.copy()
downloadable_df['UniProt_ID'] = downloadable_df['UniProt_ID'].apply(
lambda x: x.split('/')[-2] # Gets the ID part from the URL
)
downloadable_df['GO_ID'] = downloadable_df['GO_ID'].apply(
lambda x: x.split('/')[-1] # Gets the ID part from the URL
)
# Download filtered results
st.download_button(
label="Download Filtered Results",
data=convert_df(downloadable_df),
file_name="filtered_predictions.csv",
mime="text/csv",
key="download_filtered_predictions"
)
with kg_viz_tab:
st.markdown("### Knowledge Graph Visualization")
if not selected_proteins:
st.info("Please select proteins from the sidebar to visualize their knowledge graphs.")
elif len(selected_proteins) <= 10:
st.text("Visualize the knowledge graph for each protein to understand the biological relationships that contributed to the predictions.")
protein_tabs = st.tabs([f"{protein_id}" for protein_id in selected_proteins])
# Create visualizations in each tab
for idx, protein_id in enumerate(selected_proteins):
with protein_tabs[idx]:
max_node_count = st.slider(
"Maximum neighbors per edge type",
min_value=5,
max_value=50,
value=10,
step=5,
help="Control the maximum number of neighboring nodes shown for each relationship type",
key=f"slider_{protein_id}"
)
# Check if visualization exists for this protein
viz_exists = (protein_id in st.session_state.protein_visualizations and
os.path.exists(st.session_state.protein_visualizations[protein_id]['path']))
if not viz_exists:
if st.button(f"Generate Visualization", key=f"viz_{protein_id}"):
# Generate visualization with selected max_node_count
html_path, visualized_edges = visualize_protein_subgraph(
st.session_state.heterodata,
protein_id,
st.session_state.predictions_df,
limit=max_node_count
)
# Store visualization info in session state
st.session_state.protein_visualizations[protein_id] = {
'path': html_path,
'edges': visualized_edges
}
st.rerun()
# If visualization exists, display it
if viz_exists:
viz_info = st.session_state.protein_visualizations[protein_id]
# Add download button for edges
formatted_edges = {}
for edge_type, edges in viz_info['edges'].items():
edge_type_str = f"{edge_type[0]}_{edge_type[1]}_{edge_type[2]}"
formatted_edges[edge_type_str] = [
{"source": edge[0][0], "target": edge[0][1], "probability": edge[1]}
for edge in edges
]
kg_viz_button_columns = st.columns([1, 1, 1])
with kg_viz_button_columns[0]:
st.download_button(
label='Download Visualized Edges',
data=json.dumps(formatted_edges, indent=2),
file_name=f'{protein_id}_visualized_edges.json',
mime='application/json'
)
with kg_viz_button_columns[1]:
if st.button("Regenerate Visualization", key=f"regenerate_{protein_id}"):
# Clean up old file
try:
os.unlink(viz_info['path'])
except FileNotFoundError:
pass
# Remove from session state
del st.session_state.protein_visualizations[protein_id]
st.rerun()
with open(viz_info['path'], 'r', encoding='utf-8') as f:
html_content = f.read()
st.components.v1.html(html_content, height=1200)
else:
st.warning("Knowledge graph visualization is only available when 10 or fewer proteins are selected.") |