Spaces:
Running
Running
File size: 17,693 Bytes
8f4b741 e0fbc94 8f4b741 67e78f6 5cb58d3 8f4b741 e0fbc94 8f4b741 51641fb 8f4b741 51641fb 8f4b741 51641fb 8f4b741 e0fbc94 8f4b741 f465b10 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 67e78f6 8f4b741 51641fb 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 e0fbc94 8f4b741 51641fb 67e78f6 51641fb 67e78f6 8f4b741 51641fb 8f4b741 51641fb 8f4b741 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 5cb58d3 f465b10 5cb58d3 f465b10 31935f9 f465b10 31935f9 f465b10 31935f9 f465b10 8f4b741 f465b10 8f4b741 f465b10 8f4b741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
from pyvis.network import Network
import os
import json
import gzip
NODE_TYPE_COLORS = {
'Disease': '#079dbb',
'HPO': '#58d0e8',
'Drug': '#815ac0',
'Compound': '#d2b7e5',
'Domain': '#6bbf59',
'GO_term_P': '#ff8800',
'GO_term_F': '#ffaa00',
'GO_term_C': '#ffc300',
'Pathway': '#720026',
'kegg_Pathway': '#720026',
'EC_number': '#ce4257',
'Protein': '#3aa6a4'
}
EDGE_LABEL_TRANSLATION = {
'Orthology': 'is ortholog to',
'Pathway': 'takes part in',
'kegg_path_prot': 'takes part in',
'protein_domain': 'has',
'PPI': 'interacts with',
'HPO': 'is associated with',
'kegg_dis_prot': 'is related to',
'Disease': 'is related to',
'Drug': 'targets',
'protein_ec': 'catalyzes',
'Chembl': 'targets',
('protein_function', 'GO_term_F'): 'enables',
('protein_function', 'GO_term_P'): 'is involved in',
('protein_function', 'GO_term_C'): 'localizes to',
}
NODE_LABEL_TRANSLATION = {
'HPO': 'Phenotype',
'GO_term_P': 'Biological Process',
'GO_term_F': 'Molecular Function',
'GO_term_C': 'Cellular Component',
'kegg_Pathway': 'Pathway',
'EC_number': 'EC Number',
}
GO_CATEGORY_MAPPING = {
'Biological Process': 'GO_term_P',
'Molecular Function': 'GO_term_F',
'Cellular Component': 'GO_term_C'
}
def get_node_url(node_type, node_id):
"""Get the URL for a node based on its type and ID"""
if node_type.startswith('GO_term'):
return f"https://www.ebi.ac.uk/QuickGO/term/{node_id}"
elif node_type == 'Protein':
return f"https://www.uniprot.org/uniprotkb/{node_id}/entry"
elif node_type == 'Disease':
if ':' in node_id:
ontology = node_id.split(':')[0]
if ontology == 'EFO':
return f"http://www.ebi.ac.uk/efo/EFO_{node_id.split(':')[1]}"
elif ontology == 'MONDO':
return f'http://purl.obolibrary.org/obo/MONDO_{node_id.split(":")[1]}'
elif ontology == 'Orphanet':
return f"http://www.orpha.net/ORDO/Orphanet_{node_id.split(':')[1]}"
else:
return f"https://www.genome.jp/entry/{node_id}"
elif node_type == 'HPO':
return f"https://hpo.jax.org/browse/term/{node_id}"
elif node_type == 'Drug':
return f"https://go.drugbank.com/drugs/{node_id}"
elif node_type == 'Compound':
return f"https://www.ebi.ac.uk/chembl/explore/compound/{node_id}"
elif node_type == 'Domain':
return f"https://www.ebi.ac.uk/interpro/entry/InterPro/{node_id}"
elif node_type == 'Pathway':
return f"https://reactome.org/content/detail/{node_id}"
elif node_type == 'kegg_Pathway':
return f"https://www.genome.jp/pathway/{node_id}"
elif node_type == 'EC_number':
return f"https://enzyme.expasy.org/EC/{node_id}"
else:
return None
def _gather_protein_edges(data, protein_id):
protein_idx = data['Protein']['id_mapping'][protein_id]
reverse_id_mapping = {}
for node_type in data.node_types:
reverse_id_mapping[node_type] = {v:k for k, v in data[node_type]['id_mapping'].items()}
protein_edges = {}
print(f'Gathering edges for {protein_id}...')
for edge_type in data.edge_types:
if 'rev' not in edge_type[1]:
if edge_type not in protein_edges:
protein_edges[edge_type] = []
if edge_type[0] == 'Protein':
print(f'Gathering edges for {edge_type}...')
# append the edges with protein_idx as source node
edges = data[edge_type].edge_index[:, data[edge_type].edge_index[0] == protein_idx]
protein_edges[edge_type].extend(edges.T.tolist())
elif edge_type[2] == 'Protein':
print(f'Gathering edges for {edge_type}...')
# append the edges with protein_idx as target node
edges = data[edge_type].edge_index[:, data[edge_type].edge_index[1] == protein_idx]
protein_edges[edge_type].extend(edges.T.tolist())
for edge_type in protein_edges.keys():
if protein_edges[edge_type]:
mapped_edges = set()
for edge in protein_edges[edge_type]:
# Get source and target node types from edge_type
source_type, _, target_type = edge_type
# Map indices back to original IDs
source_id = reverse_id_mapping[source_type][edge[0]]
target_id = reverse_id_mapping[target_type][edge[1]]
mapped_edges.add((source_id, target_id))
protein_edges[edge_type] = mapped_edges
return protein_edges
def _filter_edges(protein_id, protein_edges, prediction_df, limit=10):
filtered_edges = {}
prediction_categories = prediction_df['GO_category'].unique()
prediction_categories = [GO_CATEGORY_MAPPING[category] for category in prediction_categories]
go_category_reverse_mapping = {v:k for k, v in GO_CATEGORY_MAPPING.items()}
for edge_type, edges in protein_edges.items():
# Skip if edges is empty
if edges is None or len(edges) == 0:
continue
if edge_type[2].startswith('GO_term'): # Check if it's any GO term edge
if edge_type[2] in prediction_categories:
# Handle edges for GO terms that are in prediction_df
category_mask = (prediction_df['GO_category'] == go_category_reverse_mapping[edge_type[2]]) & (prediction_df['UniProt_ID'] == protein_id)
category_predictions = prediction_df[category_mask]
if len(category_predictions) > 0:
category_predictions = category_predictions.sort_values(by='Probability', ascending=False)
edges_set = set(edges) # Convert to set for O(1) lookup
valid_edges = []
for _, row in category_predictions.iterrows():
term = row['GO_ID']
prob = row['Probability']
edge = (protein_id, term)
is_ground_truth = edge in edges_set
valid_edges.append((edge, prob, is_ground_truth))
if len(valid_edges) >= limit:
break
filtered_edges[edge_type] = valid_edges
else:
# If no predictions but it's a GO category in prediction_df
filtered_edges[edge_type] = [(edge, 'no_pred', True) for edge in list(edges)[:limit]]
else:
# For GO terms not in prediction_df, mark them as ground truth with blue color
filtered_edges[edge_type] = [(edge, 'no_pred', True) for edge in list(edges)[:limit]]
else:
# For non-GO edges, include all edges up to limit
filtered_edges[edge_type] = [(edge, None, True) for edge in list(edges)[:limit]]
return filtered_edges
def visualize_protein_subgraph(data, protein_id, prediction_df, limit=10):
with gzip.open('data/name_info.json.gz', 'rt', encoding='utf-8') as file:
name_info = json.load(file)
protein_edges = _gather_protein_edges(data, protein_id)
visualized_edges = _filter_edges(protein_id, protein_edges, prediction_df, limit)
print(f'Edges to be visualized: {visualized_edges}')
net = Network(height="600px", width="100%", directed=True, notebook=False)
# Create groups configuration from NODE_TYPE_COLORS
groups_config = {}
for node_type, color in NODE_TYPE_COLORS.items():
groups_config[node_type] = {
"color": {"background": color, "border": color}
}
# Convert groups_config to a JSON-compatible string
groups_json = json.dumps(groups_config)
# Configure physics options with settings for better clustering
net.set_options("""{
"physics": {
"enabled": true,
"barnesHut": {
"gravitationalConstant": -1000,
"springLength": 250,
"springConstant": 0.001,
"damping": 0.09,
"avoidOverlap": 0
},
"forceAtlas2Based": {
"gravitationalConstant": -50,
"centralGravity": 0.01,
"springLength": 100,
"springConstant": 0.08,
"damping": 0.4,
"avoidOverlap": 0
},
"solver": "barnesHut",
"stabilization": {
"enabled": true,
"iterations": 1000,
"updateInterval": 25
}
},
"layout": {
"improvedLayout": true,
"hierarchical": {
"enabled": false
}
},
"interaction": {
"hover": true,
"navigationButtons": true,
"multiselect": true
},
"configure": {
"enabled": false,
"filter": ["physics", "layout", "manipulation"],
"showButton": true
},
"groups": """ + groups_json + "}")
# Add the main protein node
query_node_url = get_node_url('Protein', protein_id)
node_name = name_info['Protein'][protein_id]
query_node_title = f"{node_name} (Query Protein)"
if query_node_url:
query_node_title = f'<a href="{query_node_url}" target="_blank">{query_node_title}</a>'
net.add_node(protein_id,
label=protein_id,
title=query_node_title,
color={'background': 'white', 'border': '#c1121f'},
borderWidth=4,
shape="dot",
font={'color': '#000000', 'size': 15},
group='Protein',
size=30,
mass=2.5)
# Track added nodes to avoid duplication
added_nodes = {protein_id}
# Add edges and target nodes
for edge_type, edges in visualized_edges.items():
source_type, relation_type, target_type = edge_type
if relation_type == 'protein_function':
relation_type = EDGE_LABEL_TRANSLATION[(relation_type, target_type)]
else:
relation_type = EDGE_LABEL_TRANSLATION[relation_type]
for edge_info in edges:
edge, probability, is_ground_truth = edge_info
source, target = edge[0], edge[1]
source_str = str(source)
target_str = str(target)
# Add source node if not present
if source_str not in added_nodes:
if not source_type.startswith('GO_term'):
node_name = name_info[source_type][source_str]
else:
node_name = name_info['GO_term'][source_str]
url = get_node_url(source_type, source_str)
title = f"{node_name} ({NODE_LABEL_TRANSLATION[source_type] if source_type in NODE_LABEL_TRANSLATION else source_type})"
if url:
title = f'<a href="{url}" target="_blank">{title}</a>'
net.add_node(source_str,
label=source_str,
shape="dot",
font={'color': '#000000', 'size': 12},
title=title,
group=source_type,
size=15,
mass=1.5)
added_nodes.add(source_str)
# Add target node if not present
if target_str not in added_nodes:
if not target_type.startswith('GO_term'):
node_name = name_info[target_type][target_str]
else:
node_name = name_info['GO_term'][target_str]
url = get_node_url(target_type, target_str)
title = f"{node_name} ({NODE_LABEL_TRANSLATION[target_type] if target_type in NODE_LABEL_TRANSLATION else target_type})"
if url:
title = f'<a href="{url}" target="_blank">{title}</a>'
net.add_node(target_str,
label=target_str,
shape="dot",
font={'color': '#000000', 'size': 12},
title=title,
group=target_type,
size=15,
mass=1.5)
added_nodes.add(target_str)
# Add edge with relationship type and probability as label
edge_label = f"{relation_type}"
if probability is not None:
if probability == 'no_pred':
edge_color = '#219ebc'
edge_label += ' (P=Not generated)'
else:
edge_label += f" (P={probability:.2f})"
edge_color = '#8338ec' if is_ground_truth else '#c1121f'
# if validated prediction purple, if non-validated prediction red, if no prediction (directly from database) blue
net.add_edge(source_str, target_str,
label=edge_label,
font={'size': 0},
color=edge_color,
title=edge_label,
length=200,
smooth={'type': 'curvedCW', 'roundness': 0.1})
else:
net.add_edge(source_str, target_str,
label=edge_label,
font={'size': 0},
color='#666666', # Keep default gray for non-GO edges
title=edge_label,
length=200,
smooth={'type': 'curvedCW', 'roundness': 0.1})
# LEGEND
legend_html = """
<style>
.kg-legend {
margin-top: 20px;
padding: 20px;
border: 1px solid #ddd;
border-radius: 5px;
font-family: Arial, sans-serif;
display: flex;
gap: 20px;
}
.legend-section-nodes {
flex: 2; /* Takes up 2/3 of the space */
}
.legend-section-edges {
flex: 1; /* Takes up 1/3 of the space */
}
.legend-title {
margin-bottom: 15px;
color: #333;
font-size: 16px;
font-weight: bold;
}
.nodes-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 12px;
}
.edges-grid {
display: grid;
grid-template-columns: 1fr;
gap: 12px;
}
.legend-item {
display: flex;
align-items: center;
padding: 4px;
}
.node-indicator {
width: 15px;
height: 15px;
border-radius: 50%;
margin-right: 10px;
flex-shrink: 0;
}
.edge-indicator {
width: 40px;
height: 3px;
margin-right: 10px;
flex-shrink: 0;
}
.legend-label {
font-size: 14px;
}
</style>
<div class="kg-legend">
<div class="legend-section-nodes">
<div class="legend-title">Node Types</div>
<div class="nodes-grid">"""
# Node types in 2 columns
for node_type, color in NODE_TYPE_COLORS.items():
if node_type == 'kegg_Pathway':
continue
if node_type in NODE_LABEL_TRANSLATION:
node_label = NODE_LABEL_TRANSLATION[node_type]
else:
node_label = node_type
legend_html += f"""
<div class="legend-item">
<div class="node-indicator" style="background-color: {color};"></div>
<span class="legend-label">{node_label}</span>
</div>"""
# Edge types in 1 column
legend_html += """
</div>
</div>
<div class="legend-section-edges">
<div class="legend-title">Edge Colors</div>
<div class="edges-grid">
<div class="legend-item">
<div class="edge-indicator" style="background-color: #8338ec;"></div>
<span class="legend-label">Validated GO Prediction</span>
</div>
<div class="legend-item">
<div class="edge-indicator" style="background-color: #c1121f;"></div>
<span class="legend-label">Non-validated GO Prediction</span>
</div>
<div class="legend-item">
<div class="edge-indicator" style="background-color: #219ebc;"></div>
<span class="legend-label">Ground Truth GO Annotation</span>
</div>
<div class="legend-item">
<div class="edge-indicator" style="background-color: #666666;"></div>
<span class="legend-label">Other Relationships</span>
</div>
</div>
</div>
</div>
"""
# Save graph to a protein-specific file in a temporary directory
os.makedirs('temp_viz', exist_ok=True)
file_path = os.path.join('temp_viz', f'{protein_id}_graph.html')
net.save_graph(file_path)
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Insert the legend before the closing body tag
content = content.replace('</body>', f'{legend_html}</body>')
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
return file_path, visualized_edges |