Heramb26's picture
Custom Model
0218a3d
raw
history blame
1.38 kB
import torch
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from huggingface_hub import hf_hub_download
import os
# Load the model checkpoint and tokenizer files from Hugging Face Model Hub
checkpoint_folder = hf_hub_download(repo_id="Heramb26/tr-ocr-custom-checkpoints", filename="checkpoint-2070")
# Set up the device (GPU or CPU)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the fine-tuned model and processor from the downloaded folder
model = VisionEncoderDecoderModel.from_pretrained(checkpoint_folder).to(device)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
def ocr_image(image):
"""
Perform OCR on an image using the loaded model.
:param image: Input PIL image.
:return: Extracted text.
"""
# Preprocess image and generate OCR text
pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Example usage
image_path = "path/to/your/image.jpg" # Update with the path to your image
image = Image.open(image_path) # Open the image file using PIL
extracted_text = ocr_image(image) # Perform OCR on the image
print("Extracted Text:", extracted_text)