Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
pip install transformers[sentencepiece]
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
|
|
4 |
|
|
|
|
|
5 |
|
6 |
# Load the summarization & translation model pipeline
|
7 |
tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048',return_all_scores=True)
|
8 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
9 |
-
|
10 |
|
11 |
# Streamlit application title
|
12 |
st.title("Emotion analysis")
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
5 |
+
#tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
6 |
+
#model = AutoModelForSequenceClassification.from_pretrained("Howosn/Sentiment_Model")
|
7 |
|
8 |
# Load the summarization & translation model pipeline
|
9 |
tran_sum_pipe = pipeline("translation", model='utrobinmv/t5_summary_en_ru_zh_base_2048',return_all_scores=True)
|
10 |
sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True)
|
11 |
+
tokenizer = T5Tokenizer.from_pretrained('utrobinmv/t5_summary_en_ru_zh_base_2048')
|
12 |
|
13 |
# Streamlit application title
|
14 |
st.title("Emotion analysis")
|