File size: 4,218 Bytes
86d2765 64212e0 86d2765 64212e0 9ddc37e 2eb6d66 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 0a9dccb 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 e38e937 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 e9c0dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
from prediction import run_image_prediction
import torch
import torchvision.transforms as T
from celle.utils import process_image
from PIL import Image
from matplotlib import pyplot as plt
def gradio_demo(model_name, sequence_input, nucleus_image, protein_image):
model = f"CELL-E_2-Image_Prediction/models/{model_name}.ckpt"
config = f"CELL-E_2-Image_Prediction/models/{model_name}.yaml"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if "Finetuned" in model_name:
dataset = "OpenCell"
else:
dataset = "HPA"
nucleus_image = process_image(nucleus_image, dataset, "nucleus")
if protein_image:
protein_image = process_image(protein_image, dataset, "protein")
protein_image = protein_image > torch.median(protein_image)
protein_image = protein_image[0, 0]
protein_image = protein_image * 1.0
else:
protein_image = torch.ones((256, 256))
threshold, heatmap = run_image_prediction(
sequence_input=sequence_input,
nucleus_image=nucleus_image,
model_ckpt_path=model,
model_config_path=config,
device=device,
)
# Plot the heatmap
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
plt.axis("off")
# Save the plot to a temporary file
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
# Open the temporary file as a PIL image
heatmap = Image.open("temp.png")
return (
T.ToPILImage()(nucleus_image[0, 0]),
T.ToPILImage()(protein_image),
T.ToPILImage()(threshold),
heatmap,
)
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("Select the prediction model.")
gr.Markdown(
"CELL-E_2_HPA_480 is a good general purpose model for various cell types using ICC-IF."
)
gr.Markdown(
"CELL-E_2_HPA_Finetuned_480 is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
)
with gr.Row():
model_name = gr.Dropdown(
["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
value="CELL-E_2_HPA_480",
label="Model Name",
)
with gr.Row():
gr.Markdown(
"Input the desired amino acid sequence. GFP is shown below by default."
)
with gr.Row():
sequence_input = gr.Textbox(
value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
label="Sequence",
)
with gr.Row():
gr.Markdown(
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
)
gr.Markdown("The protein image is optional and is just used for display.")
with gr.Row().style(equal_height=True):
nucleus_image = gr.Image(
type="pil",
label="Nucleus Image",
image_mode="L",
)
protein_image = gr.Image(type="pil", label="Protein Image (Optional)")
with gr.Row():
gr.Markdown("Image predictions are show below.")
with gr.Row().style(equal_height=True):
nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")
protein_threshold_image = gr.Image(
type="pil", label="Protein Threshold Image", image_mode="L"
)
predicted_threshold_image = gr.Image(
type="pil", label="Predicted Threshold image", image_mode="L"
)
predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
with gr.Row():
button = gr.Button("Run Model")
inputs = [model_name, sequence_input, nucleus_image, protein_image]
outputs = [
nucleus_image_crop,
protein_threshold_image,
predicted_threshold_image,
predicted_heatmap,
]
button.click(gradio_demo, inputs, outputs)
demo.launch(enable_queue=True) |