File size: 6,171 Bytes
35aeee1 86d2765 64212e0 35aeee1 64e25c0 35aeee1 fece6fa 35aeee1 815b096 35aeee1 b75e844 35aeee1 b75e844 35aeee1 86d2765 35aeee1 86d2765 35aeee1 64212e0 35aeee1 cbeaab6 35aeee1 64212e0 35aeee1 64212e0 0a9dccb d8ffd20 ce23710 cbeaab6 2d4b37f cbeaab6 2d4b37f cbeaab6 35aeee1 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 cbeaab6 e38e937 cbeaab6 64212e0 cbeaab6 d8ffd20 64212e0 cbeaab6 64212e0 cbeaab6 64212e0 35aeee1 64212e0 e9c0dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import gradio as gr
from prediction import run_image_prediction
import torch
import torchvision.transforms as T
from celle.utils import process_image
from PIL import Image
from matplotlib import pyplot as plt
from celle_main import instantiate_from_config
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
class model:
def __init__(self):
self.model = None
self.model_name = None
def gradio_demo(self, model_name, sequence_input, nucleus_image, protein_image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.model_name != model_name:
self.model_name = model_name
model_ckpt_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="model.ckpt")
model_config_path = hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="config.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="nucleus_vqgan.yaml")
hf_hub_download(repo_id=f"HuangLab/{model_name}", filename="threshold_vqgan.yaml")
# Load model config and set ckpt_path if not provided in config
config = OmegaConf.load(model_config_path)
if config["model"]["params"]["ckpt_path"] is None:
config["model"]["params"]["ckpt_path"] = model_ckpt_path
# Set condition_model_path and vqgan_model_path to None
config["model"]["params"]["condition_model_path"] = None
config["model"]["params"]["vqgan_model_path"] = None
base_path = os.getcwd()
os.chdir(os.path.dirname(model_ckpt_path))
# Instantiate model from config and move to device
self.model = instantiate_from_config(config.model).to(device)
self.model = torch.compile(self.model,mode='max-autotune')
os.chdir(base_path)
if "Finetuned" in model_name:
dataset = "OpenCell"
else:
dataset = "HPA"
to_tensor = T.ToTensor()
nucleus_tensor = to_tensor(nucleus_image)
if protein_image:
protein_tensor = to_tensor(protein_image)
stacked_images = torch.stack([nucleus_tensor, protein_tensor], dim=0)
processed_images = process_image(stacked_images, dataset)
nucleus_image = processed_images[0].unsqueeze(0)
protein_image = processed_images[1].unsqueeze(0)
protein_image = protein_image > 0
protein_image = 1.0 * protein_image
else:
protein_image = torch.ones((256, 256))
threshold, heatmap = run_image_prediction(
sequence_input=sequence_input,
nucleus_image=nucleus_image,
model=self.model,
device=device,
)
# Plot the heatmap
plt.imshow(heatmap.cpu(), cmap="rainbow", interpolation="bicubic")
plt.axis("off")
# Save the plot to a temporary file
plt.savefig("temp.png", bbox_inches="tight", dpi=256)
# Open the temporary file as a PIL image
heatmap = Image.open("temp.png")
return (
T.ToPILImage()(nucleus_image[0, 0]),
T.ToPILImage()(protein_image),
T.ToPILImage()(threshold),
heatmap,
)
base_class = model()
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## Inputs")
gr.Markdown("Select the prediction model. **Note the first run may take ~1-2 minutes, but will take 2-3 seconds afterwards.**")
gr.Markdown(
"```CELL-E_2_HPA_480``` is a good general purpose model for various cell types using ICC-IF."
)
gr.Markdown(
"```CELL-E_2_HPA_Finetuned_480``` is finetuned on OpenCell and is good more live-cell predictions on HEK cells."
)
with gr.Row():
model_name = gr.Dropdown(
["CELL-E_2_HPA_480", "CELL-E_2_HPA_Finetuned_480"],
value="CELL-E_2_HPA_480",
label="Model Name",
)
with gr.Row():
gr.Markdown(
"Input the desired amino acid sequence. GFP is shown below by default."
)
with gr.Row():
sequence_input = gr.Textbox(
value="MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK",
label="Sequence",
)
with gr.Row():
gr.Markdown(
"Uploading a nucleus image is necessary. A random crop of 256 x 256 will be applied if larger. We provide default images in [images](https://huggingface.co/spaces/HuangLab/CELL-E_2/tree/main/images)"
)
gr.Markdown("The protein image is optional and is just used for display.")
with gr.Row().style(equal_height=True):
nucleus_image = gr.Image(
type="pil",
label="Nucleus Image",
image_mode="L",
)
protein_image = gr.Image(type="pil", label="Protein Image (Optional)")
with gr.Row():
gr.Markdown("## Outputs")
with gr.Row():
gr.Markdown("Image predictions are show below.")
with gr.Row().style(equal_height=True):
nucleus_image_crop = gr.Image(type="pil", label="Nucleus Image", image_mode="L")
protein_threshold_image = gr.Image(
type="pil", label="Protein Threshold Image", image_mode="L"
)
predicted_threshold_image = gr.Image(
type="pil", label="Predicted Threshold image", image_mode="L"
)
predicted_heatmap = gr.Image(type="pil", label="Predicted Heatmap")
with gr.Row():
button = gr.Button("Run Model")
inputs = [model_name, sequence_input, nucleus_image, protein_image]
outputs = [
nucleus_image_crop,
protein_threshold_image,
predicted_threshold_image,
predicted_heatmap,
]
button.click(base_class.gradio_demo, inputs, outputs)
demo.launch(enable_queue=True) |