monitoringInterface / detectron2monitor.py
HugoHE's picture
Update detectron2monitor.py
39f90f0
raw
history blame
11.6 kB
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import torch
from detectron2.utils.logger import setup_logger
setup_logger()
from detectron2.config import get_cfg
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.modeling import build_model
from detectron2.data.detection_utils import read_image
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
import numpy as np
import cv2
import os
import time
import pickle
import gradio as gr
import tqdm
import matplotlib.pyplot as plt
import io
from PIL import Image
torch.manual_seed(0)
np.random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from models.regnet import build_regnet_fpn_backbone
import models.metadata as metadata
from utils_clustering import *
from base_cam import EigenCAM
from pytorch_grad_cam.utils.model_targets import FasterRCNNBoxScoreTarget
fullName2ab_dict = {'PASCAL-VOC':"voc", 'BDD100K':"bdd", 'KITTI':"kitti", 'Speed signs':"speed", 'NuScenes':"nu"}
ab2FullName_dict = {'voc':"PASCAL-VOC", 'bdd':"BDD100K", 'kitti':"KITTI", 'speed':"Speed signs", 'nu':"NuScenes"}
class Detectron2Monitor():
def __init__(self, id, backbone, confidence_threshold=0.05):
self.id, self.label_list = self._get_label_list(id)
self.backbone = backbone
self.confidence_threshold = confidence_threshold
self.cfg, self.device, self.model = self._get_model()
self.label_dict = {i:label for i, label in enumerate(self.label_list)}
self.eval_list = ["ID-voc-OOD-coco", "OOD-open", "voc-val"] if self.id == "voc" else ["ID-bdd-OOD-coco", "OOD-open", "voc-ood", f"{self.id}-val"]
MetadataCatalog.get("custom_dataset").set(thing_classes=self.label_list)
def _get_label_list(self, id):
id = fullName2ab_dict[id]
if id == 'voc':
label_list = metadata.VOC_THING_CLASSES
elif id == 'bdd':
label_list = metadata.BDD_THING_CLASSES
elif id == 'kitti':
label_list = metadata.KITTI_THING_CLASSES
elif id == 'speed' or id == 'prescan':
label_list = metadata.SPEED_THING_CLASSES
else:
label_list = metadata.NU_THING_CLASSES
return id, label_list
def _get_model(self):
cfg = get_cfg()
cfg.merge_from_file(f"models/configs/vanilla_{self.backbone}.yaml")
cfg.MODEL.WEIGHTS = f"models/weights/model_final_{self.backbone}_{self.id}.pth"
cfg.MODEL.DEVICE='cpu'
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(self.label_list)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = self.confidence_threshold
model = build_model(cfg)
model.eval()
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.MODEL.WEIGHTS)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
return cfg, device, model
def _inference(self, model, inputs):
with torch.no_grad():
images = model.preprocess_image(inputs)
features = model.backbone(images.tensor)
proposals, _ = model.proposal_generator(images, features, None) # RPN
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_features = model.roi_heads.box_head(box_features) # features of all 1k candidates
predictions = model.roi_heads.box_predictor(box_features)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
# output boxes, masks, scores, etc
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size
# features of the proposed boxes
feats = box_features[pred_inds].cpu().numpy()
return pred_instances, feats
def _load_monitors(self, clustering_algo, nb_clusters, eps=5, min_samples=10):
if clustering_algo == "dbscan":
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/eps{eps}_min_samples{min_samples}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
else:
with open(f"monitors/{self.id}/{self.backbone}/{clustering_algo}/{nb_clusters}.pkl", 'rb') as f:
monitors_dict = pickle.load(f)
return monitors_dict
def _evaluate(self, clustering_algo, nb_clusters, eps, min_samples):
dataset_name = f"{self.id}-val"
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_tp_dict.pickle', 'rb') as f:
feats_tp_dict = pickle.load(f)
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
monitors_dict = self._load_monitors(clustering_algo, nb_clusters, eps, min_samples)
# make verdicts on ID data
data_tp = []
data_fp = []
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
for label in tqdm.tqdm(self.label_list, desc="Evaluation on ID data"):
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_tp_dict[label])
data_tp.append([label, len(verdict), np.sum(verdict)/len(verdict)])
accept_sum["tp"] += np.sum(verdict)
reject_sum["tp"] += len(verdict) - np.sum(verdict)
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
data_fp.append([label, len(verdict), (len(verdict)-np.sum(verdict))/len(verdict)])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
TPR = round((accept_sum['tp'] / (reject_sum['tp'] + accept_sum['tp'])*100), 2)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
id_name = ab2FullName_dict[self.id]
df_id = pd.DataFrame([[id_name, f"{TPR}%", f"{FPR}%"]], columns=["Dataset", "TPR", "FPR"])
data_ood = []
i = 0
self.eval_list.remove(dataset_name)
for dataset_name in tqdm.tqdm(self.eval_list, desc="Evaluation on OOD data"):
accept_sum = {"tp": 0, "fp": 0}
reject_sum = {"tp": 0, "fp": 0}
with open(f'val_feats/{self.id}/{self.backbone}/{dataset_name}_feats_fp_dict.pickle', 'rb') as f:
feats_fp_dict = pickle.load(f)
for label in self.label_list:
if label in monitors_dict:
verdict = monitors_dict[label].make_verdicts(feats_fp_dict[label])
accept_sum["fp"] += np.sum(verdict)
reject_sum["fp"] += len(verdict) - np.sum(verdict)
FPR = round((accept_sum['fp'] / (reject_sum['fp'] + accept_sum['fp'])*100), 2)
data_ood.append([dataset_name, str(FPR)+"%"])
i += 1
# prepare dataframes
df_ood = pd.DataFrame(data_ood, columns=["Dataset", "FPR"])
df_ood["Dataset"] = ["COCO", "Open Images"] if self.id == "voc" else ["COCO", "Open Images", "VOC-OOD"]
return df_id, df_ood
def _postprocess_cam(self, raw_cam, img_width, img_height):
cam_orig = np.sum(raw_cam, axis=0) # [H,W]
cam_orig = np.maximum(cam_orig, 0) # ReLU
cam_orig -= np.min(cam_orig)
cam_orig /= np.max(cam_orig)
cam = cv2.resize(cam_orig, (img_width, img_height))
return cam
def _fasterrcnn_reshape_transform(self, x):
target_size = x['p6'].size()[-2 : ]
activations = []
for key, value in x.items():
activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
def _get_input_dict(self, original_image):
height, width = original_image.shape[:2]
transform_gen = T.ResizeShortestEdge(
[self.cfg.INPUT.MIN_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TEST], self.cfg.INPUT.MAX_SIZE_TEST
)
image = transform_gen.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
return inputs
def get_output(self, monitors_dict, img):
image = read_image(img, format="BGR")
input_image_dict = [self._get_input_dict(image)]
pred_instances, feats = self._inference(self.model, input_image_dict)
detections = pred_instances[0]["instances"].to("cpu")
cls_idxs = detections.pred_classes.detach().numpy()
# get labels from class indices
labels = [self.label_dict[i] for i in cls_idxs]
# count values in labels, and return a dictionary
labels_count_dict = dict((i, labels.count(i)) for i in labels)
v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
v = v.draw_instance_predictions(detections)
img_detection = v.get_image()
df = pd.DataFrame(list(labels_count_dict.items()), columns=['Object', 'Count'])
verdicts = []
for label, feat in zip(labels, feats):
verdict = monitors_dict[label].make_verdicts(feat[np.newaxis,:])[0]
verdicts.append(verdict)
detections_ood = detections[[i for i, x in enumerate(verdicts) if not x]]
detections_ood.pred_classes = torch.tensor([5]*len(detections_ood.pred_classes))
labels_ood = [label for label, verdict in zip(labels, verdicts) if not verdict]
verdicts_ood = ["Rejected"]*len(labels_ood)
df_verdict = pd.DataFrame(list(zip(labels_ood, verdicts_ood)), columns=['Object', 'Verdict'])
v = Visualizer(image[..., ::-1], MetadataCatalog.get("custom_dataset"), scale=1)
for box in detections_ood.pred_boxes.to('cpu'):
v.draw_box(box)
v.draw_text("OOD", tuple(box[:2].numpy()))
v = v.get_output()
img_ood = v.get_image()
pred_bboxes = detections.pred_boxes.tensor.numpy().astype(np.int32)
target_layers = [self.model.backbone]
targets = [FasterRCNNBoxScoreTarget(labels=labels, bounding_boxes=pred_bboxes)]
cam = EigenCAM(self.model,
target_layers,
use_cuda=False,
reshape_transform=self._fasterrcnn_reshape_transform)
grayscale_cam = cam(input_image_dict, targets)
cam = self._postprocess_cam(grayscale_cam, input_image_dict[0]["width"], input_image_dict[0]["height"])
plt.rcParams["figure.figsize"] = (30,10)
plt.imshow(img_detection[..., ::-1], interpolation='none')
plt.imshow(cam, cmap='jet', alpha=0.5)
plt.axis("off")
img_buff = io.BytesIO()
plt.savefig(img_buff, format='png', bbox_inches='tight', pad_inches=0)
img_cam = Image.open(img_buff)
image_dict = {}
image_dict["image"] = image
image_dict["cam"] = img_cam
image_dict["detection"] = img_detection
image_dict["verdict"] = img_ood
return image_dict, df, df_verdict