Spaces:
Runtime error
Runtime error
# DreamGaussian | |
This repository contains the official implementation for [DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation](https://arxiv.org/abs/2309.16653). | |
### [Project Page](https://dreamgaussian.github.io) | [Arxiv](https://arxiv.org/abs/2309.16653) | |
https://github.com/dreamgaussian/dreamgaussian/assets/25863658/db860801-7b9c-4b30-9eb9-87330175f5c8 | |
### [Colab demo](https://github.com/camenduru/dreamgaussian-colab) | |
* Image-to-3D: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1sLpYmmLS209-e5eHgcuqdryFRRO6ZhFS?usp=sharing) | |
* Text-to-3D: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/dreamgaussian-colab/blob/main/dreamgaussian_colab.ipynb) | |
### [Gradio demo](https://huggingface.co/spaces/jiawei011/dreamgaussian) | |
* Image-to-3D: <a href="https://huggingface.co/spaces/jiawei011/dreamgaussian"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Gradio%20Demo-Huggingface-orange"></a> | |
## Install | |
```bash | |
pip install -r requirements.txt | |
# a modified gaussian splatting (+ depth, alpha rendering) | |
git clone --recursive https://github.com/ashawkey/diff-gaussian-rasterization | |
pip install ./diff-gaussian-rasterization | |
# simple-knn | |
pip install ./simple-knn | |
# nvdiffrast | |
pip install git+https://github.com/NVlabs/nvdiffrast/ | |
# kiuikit | |
pip install git+https://github.com/ashawkey/kiuikit | |
``` | |
Tested on: | |
* Ubuntu 22 with torch 1.12 & CUDA 11.6 on a V100. | |
* Windows 10 with torch 2.1 & CUDA 12.1 on a 3070. | |
## Usage | |
Image-to-3D: | |
```bash | |
### preprocess | |
# background removal and recentering, save rgba at 256x256 | |
python process.py data/name.jpg | |
# save at a larger resolution | |
python process.py data/name.jpg --size 512 | |
# process all jpg images under a dir | |
python process.py data | |
### training gaussian stage | |
# train 500 iters (~1min) and export ckpt & coarse_mesh to logs | |
python main.py --config configs/image.yaml input=data/name_rgba.png save_path=name | |
# gui mode (supports visualizing training) | |
python main.py --config configs/image.yaml input=data/name_rgba.png save_path=name gui=True | |
# load and visualize a saved ckpt | |
python main.py --config configs/image.yaml load=logs/name_model.ply gui=True | |
# use an estimated elevation angle if image is not front-view (e.g., common looking-down image can use -30) | |
python main.py --config configs/image.yaml input=data/name_rgba.png save_path=name elevation=-30 | |
### training mesh stage | |
# auto load coarse_mesh and refine 50 iters (~1min), export fine_mesh to logs | |
python main2.py --config configs/image.yaml input=data/name_rgba.png save_path=name | |
# specify coarse mesh path explicity | |
python main2.py --config configs/image.yaml input=data/name_rgba.png save_path=name mesh=logs/name_mesh.obj | |
# gui mode | |
python main2.py --config configs/image.yaml input=data/name_rgba.png save_path=name gui=True | |
# export glb instead of obj | |
python main2.py --config configs/image.yaml input=data/name_rgba.png save_path=name mesh_format=glb | |
### visualization | |
# gui for visualizing mesh | |
python -m kiui.render logs/name.obj | |
# save 360 degree video of mesh (can run without gui) | |
python -m kiui.render logs/name.obj --save_video name.mp4 --wogui | |
# save 8 view images of mesh (can run without gui) | |
python -m kiui.render logs/name.obj --save images/name/ --wogui | |
### evaluation of CLIP-similarity | |
python -m kiui.cli.clip_sim data/name_rgba.png logs/name.obj | |
``` | |
Please check `./configs/image.yaml` for more options. | |
Text-to-3D: | |
```bash | |
### training gaussian stage | |
python main.py --config configs/text.yaml prompt="a photo of an icecream" save_path=icecream | |
### training mesh stage | |
python main2.py --config configs/text.yaml prompt="a photo of an icecream" save_path=icecream | |
``` | |
Please check `./configs/text.yaml` for more options. | |
Helper scripts: | |
```bash | |
# run all image samples (*_rgba.png) in ./data | |
python scripts/runall.py --dir ./data --gpu 0 | |
# run all text samples (hardcoded in runall_sd.py) | |
python scripts/runall_sd.py --gpu 0 | |
# export all ./logs/*.obj to mp4 in ./videos | |
python scripts/convert_obj_to_video.py --dir ./logs | |
``` | |
### Gradio Demo | |
```bash | |
python gradio_app.py | |
``` | |
## Acknowledgement | |
This work is built on many amazing research works and open-source projects, thanks a lot to all the authors for sharing! | |
* [gaussian-splatting](https://github.com/graphdeco-inria/gaussian-splatting) and [diff-gaussian-rasterization](https://github.com/graphdeco-inria/diff-gaussian-rasterization) | |
* [threestudio](https://github.com/threestudio-project/threestudio) | |
* [nvdiffrast](https://github.com/NVlabs/nvdiffrast) | |
* [dearpygui](https://github.com/hoffstadt/DearPyGui) | |
## Citation | |
``` | |
@article{tang2023dreamgaussian, | |
title={DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation}, | |
author={Tang, Jiaxiang and Ren, Jiawei and Zhou, Hang and Liu, Ziwei and Zeng, Gang}, | |
journal={arXiv preprint arXiv:2309.16653}, | |
year={2023} | |
} | |
``` | |