File size: 7,032 Bytes
b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 417ed65 b5a9eb4 4815e32 b5a9eb4 4815e32 b5a9eb4 417ed65 b5a9eb4 417ed65 9482c8f 417ed65 b5a9eb4 9482c8f 4815e32 b5a9eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# -*- coding: utf-8 -*-
"""demo 2/3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1QeNS57tZzvJudeNjQczKJ-PbN0l1tK6V
# Import library
"""
import os
import librosa
import gradio as gr
import noisereduce as nr
from scipy.io import wavfile
from transformers import WhisperProcessor, WhisperForConditionalGeneration
"""# Load model"""
from google.colab import drive
import os
drive.mount('/content/gdrive')
# load model and processor"
processor = WhisperProcessor.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2")
model = WhisperForConditionalGeneration.from_pretrained("/content/gdrive/MyDrive/ColabNotebookShared/Speech2TextHuyenNguyen/Model/FPTVinTest2/checkpoint-1332").to("cuda")
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(task = "transcribe")
"""# Slipt audio"""
from pydub import AudioSegment
def preprocessing(path):
# CONVERT MP3 -> WAV
type_file = path.split(".")[-1]
sound = AudioSegment.from_file(path, type_file)
path_list = []
# SPLIT AUDIO
time_audio = int(sound.duration_seconds / 20) + 1
for i in range(time_audio):
t1 = i * 20 * 1000
t2 = (i+1) * 20 * 1000
if i == (time_audio-1):
newAudio = sound[t1:]
else:
newAudio = sound[t1:t2]
newAudio = newAudio.split_to_mono()[0]
newAudio = newAudio.set_frame_rate(16000) # convert frequency : mọi freq --> 16000kHz
audio_path = '/content/new_audio' + str(i) + '.wav'
newAudio.export(audio_path, format="wav")
path_list.append(audio_path)
return path_list
"""# Capitalization"""
!git lfs install
!git clone https://github.com/huyenxam/Vicap.git
# Commented out IPython magic to ensure Python compatibility.
# %cd {"/content/Vicap"}
import os
from gec_model import GecBERTModel
cache_dir = "./"
model_cap = GecBERTModel(
vocab_path=os.path.join(cache_dir, "vocabulary"),
model_paths="dragonSwing/vibert-capu",
split_chunk=True
)
"""# Spelling Correction"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer_spell = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model_spell = AutoModelForSeq2SeqLM.from_pretrained("HuyenNguyen/Vi-test1")
model_spell.cuda()
def spelling_text(text):
encoding = tokenizer_spell(text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model_spell.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=30,
)
for output in outputs:
line = tokenizer_spell.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
return line
def spelling(transcription):
sentences = transcription.split(" ")
len_sen = int(len(sentences) / 25) + 1
result = ""
for i in range(len_sen):
t1 = i * 24
t2 = (i+1) * 24
if i == (len_sen - 1):
text = " ".join(sentences[t1:])
else:
text = " ".join(sentences[t1:t2])
result = result + " " + spelling_text(text)
return result
"""# Speech To Text"""
import torch
import numpy as np
import gradio as gr
from scipy.io.wavfile import write
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
path = microphone if microphone is not None else file_upload
X_new, sr_new = librosa.load(path)
dst = "/content/audio.wav"
write(dst, sr_new, X_new)
# Split audio
transcription = ""
path_list = preprocessing(dst)
for audio_path in path_list:
# X, sr = noise(audio_path)
X, sr = librosa.load(audio_path, sr=16000)
input_features = processor(X.astype('float16'), return_tensors="pt").input_features
# predicted_ids = model.generate(input_features.to("cuda"), temperature=1.0)
predicted_ids = model.generate(input_features.to("cuda"))
text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
transcription = transcription + " " + text
transcription_spell = spelling(transcription)
transcription_cap = model_cap(transcription_spell)[0]
# sentence_result = "Câu gốc: " + transcription + "\n" + "Câu sửa lỗi chính tả: " + transcription_spell + "\n" + "Thêm dấu: " + transcription_cap
return transcription_cap
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
# yt = pt.YouTube(yt_url)
# html_embed_str = _return_yt_html_embed(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# src = "/content/audio.mp3"
# dst = "/content/audio.wav"
# stream.download(filename=src)
# X_new, sr_new = librosa.load(src)
# write(dst, sr_new, X_new)
# # X_new, sr_new = librosa.load(src)
# path_list = preprocessing(dst)
# transcription = " "
# for audio_path in path_list:
# # X, sr = noise(audio_path)
# X, sr = librosa.load(audio_path, sr=16000)
# input_features = processor(X.astype('float16'), return_tensors="pt").input_features
# predicted_ids = model.generate(input_features.to("cuda"))
# text = processor.batch_decode(predicted_ids, skip_special_tokens = True)[0]
# transcription = transcription + " " + text
# transcription = spelling(transcription)
# transcription = model_cap(transcription)[0]
return "ouput", 'This feature is temporarily locked'
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="PYLAB Demo: Transcribe Audio",
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="PYLAB Demo: Transcribe YouTube",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)
|