Hyma7's picture
Update app.py
95aac88 verified
raw
history blame
1.61 kB
import streamlit as st
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import CrossEncoder
import numpy as np
# Load the dataset
def load_dataset():
# Load the Databricks Dolly 15K dataset
return pd.read_csv('dolly_15k.csv')
# Load models
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
ranking_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
# Streamlit UI
st.title("Multi-Stage Text Retrieval Pipeline for QA")
question = st.text_input("Enter a question:")
if question:
dataset = load_dataset()
# Generate embeddings for the questions and the dataset passages
passages = dataset['response'].tolist() # Adjust this according to your dataset's structure
question_embedding = embedding_model.encode(question)
passage_embeddings = embedding_model.encode(passages)
# Retrieve top-k passages based on embeddings
top_k = 5
similarities = np.inner(question_embedding, passage_embeddings)
top_k_indices = np.argsort(similarities)[-top_k:][::-1]
relevant_passages = [passages[i] for i in top_k_indices]
st.subheader("Relevant passages:")
for passage in relevant_passages:
st.write(passage)
# Re-ranking the passages
ranked_scores = ranking_model.predict([[question, passage] for passage in relevant_passages])
ranked_passages = sorted(zip(relevant_passages, ranked_scores), key=lambda x: x[1], reverse=True)
st.subheader("Ranked passages:")
for passage, score in ranked_passages:
st.write(f"{passage} (Score: {score:.2f})")