Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,11 +63,19 @@ def rerank(retrieved_docs, query, corpus, top_k=5):
|
|
63 |
|
64 |
reranked_indices = np.argsort(scores)[::-1][:top_k]
|
65 |
reranked_docs = [retrieved_docs[idx] for idx in reranked_indices]
|
66 |
-
return reranked_docs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Streamlit main function
|
69 |
def main():
|
70 |
-
st.title("Multi-Stage Retrieval Pipeline")
|
71 |
|
72 |
st.write("Loading the dataset...")
|
73 |
corpus, queries, qrels = load_dataset()
|
@@ -83,13 +91,21 @@ def main():
|
|
83 |
retrieved_docs = candidate_retrieval(user_query, corpus, top_k=10)
|
84 |
|
85 |
st.write("Running Reranking...")
|
86 |
-
reranked_docs = rerank(retrieved_docs, user_query, corpus, top_k=5)
|
87 |
|
88 |
st.write("Top Reranked Documents:")
|
89 |
for doc_id in reranked_docs:
|
90 |
st.write(f"Document ID: {doc_id}")
|
91 |
st.write(f"Document Text: {corpus[doc_id]['text'][:500]}...") # Show the first 500 characters of the document
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
st.write("Query executed successfully!")
|
94 |
|
95 |
if __name__ == "__main__":
|
|
|
63 |
|
64 |
reranked_indices = np.argsort(scores)[::-1][:top_k]
|
65 |
reranked_docs = [retrieved_docs[idx] for idx in reranked_indices]
|
66 |
+
return reranked_docs, scores
|
67 |
+
|
68 |
+
# Function to evaluate using NDCG@10
|
69 |
+
def evaluate_ndcg(reranked_docs, qrels, query_id, k=10):
|
70 |
+
true_relevance = [qrels.get((query_id, doc_id), 0) for doc_id in reranked_docs]
|
71 |
+
ideal_relevance = sorted(true_relevance, reverse=True)
|
72 |
+
|
73 |
+
# NDCG expects input as 2D arrays
|
74 |
+
return ndcg_score([ideal_relevance], [true_relevance], k=k)
|
75 |
|
76 |
# Streamlit main function
|
77 |
def main():
|
78 |
+
st.title("Multi-Stage Retrieval Pipeline with Evaluation")
|
79 |
|
80 |
st.write("Loading the dataset...")
|
81 |
corpus, queries, qrels = load_dataset()
|
|
|
91 |
retrieved_docs = candidate_retrieval(user_query, corpus, top_k=10)
|
92 |
|
93 |
st.write("Running Reranking...")
|
94 |
+
reranked_docs, rerank_scores = rerank(retrieved_docs, user_query, corpus, top_k=5)
|
95 |
|
96 |
st.write("Top Reranked Documents:")
|
97 |
for doc_id in reranked_docs:
|
98 |
st.write(f"Document ID: {doc_id}")
|
99 |
st.write(f"Document Text: {corpus[doc_id]['text'][:500]}...") # Show the first 500 characters of the document
|
100 |
|
101 |
+
# Evaluation if the user query exists in the qrels (ground truth relevance labels)
|
102 |
+
query_id = list(queries.keys())[0] # Dummy query ID for now
|
103 |
+
if query_id in queries:
|
104 |
+
ndcg_score_value = evaluate_ndcg(reranked_docs, qrels, query_id, k=10)
|
105 |
+
st.write(f"NDCG@10 Score: {ndcg_score_value}")
|
106 |
+
else:
|
107 |
+
st.write("No ground truth available for this query.")
|
108 |
+
|
109 |
st.write("Query executed successfully!")
|
110 |
|
111 |
if __name__ == "__main__":
|