Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,16 @@
|
|
1 |
-
import os
|
2 |
-
import urllib.request
|
3 |
-
import zipfile
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
def download_and_extract_dataset():
|
|
|
|
|
|
|
|
|
7 |
dataset_url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip"
|
8 |
dataset_zip_path = "nq.zip"
|
9 |
data_path = "./datasets/nq"
|
@@ -23,29 +30,67 @@ def download_and_extract_dataset():
|
|
23 |
|
24 |
return data_path
|
25 |
|
26 |
-
# Function to load
|
27 |
def load_dataset():
|
28 |
from beir.datasets.data_loader import GenericDataLoader
|
29 |
-
|
30 |
data_path = download_and_extract_dataset()
|
31 |
-
|
32 |
-
# Load dataset using GenericDataLoader
|
33 |
-
st.write("Loading the dataset...")
|
34 |
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test")
|
35 |
-
st.write(f"Corpus Size: {len(corpus)}")
|
36 |
-
st.write(f"Queries Size: {len(queries)}")
|
37 |
-
st.write(f"Qrels Size: {len(qrels)}")
|
38 |
-
|
39 |
return corpus, queries, qrels
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def main():
|
43 |
st.title("Multi-Stage Retrieval Pipeline")
|
44 |
|
45 |
-
|
46 |
corpus, queries, qrels = load_dataset()
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
main()
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics import ndcg_score
|
7 |
|
8 |
+
# Helper function to load the dataset
|
9 |
def download_and_extract_dataset():
|
10 |
+
import urllib.request
|
11 |
+
import zipfile
|
12 |
+
import os
|
13 |
+
|
14 |
dataset_url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip"
|
15 |
dataset_zip_path = "nq.zip"
|
16 |
data_path = "./datasets/nq"
|
|
|
30 |
|
31 |
return data_path
|
32 |
|
33 |
+
# Function to load corpus, queries, and qrels
|
34 |
def load_dataset():
|
35 |
from beir.datasets.data_loader import GenericDataLoader
|
|
|
36 |
data_path = download_and_extract_dataset()
|
|
|
|
|
|
|
37 |
corpus, queries, qrels = GenericDataLoader(data_path).load(split="test")
|
|
|
|
|
|
|
|
|
38 |
return corpus, queries, qrels
|
39 |
|
40 |
+
# Stage 1: Candidate retrieval using Sentence Transformer
|
41 |
+
def candidate_retrieval(query, corpus, top_k=10):
|
42 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
43 |
+
corpus_ids = list(corpus.keys())
|
44 |
+
corpus_embeddings = model.encode([corpus[doc_id]['text'] for doc_id in corpus_ids], convert_to_tensor=True)
|
45 |
+
|
46 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
47 |
+
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
48 |
+
|
49 |
+
retrieved_docs = [corpus_ids[hit['corpus_id']] for hit in hits]
|
50 |
+
return retrieved_docs
|
51 |
+
|
52 |
+
# Stage 2: Reranking using cross-encoder
|
53 |
+
def rerank(retrieved_docs, query, corpus, top_k=5):
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
55 |
+
model = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
56 |
+
|
57 |
+
scores = []
|
58 |
+
for doc_id in retrieved_docs:
|
59 |
+
text = corpus[doc_id]['text']
|
60 |
+
inputs = tokenizer(query, text, return_tensors="pt", truncation=True, padding=True)
|
61 |
+
outputs = model(**inputs)
|
62 |
+
scores.append(outputs.logits.item())
|
63 |
+
|
64 |
+
reranked_indices = np.argsort(scores)[::-1][:top_k]
|
65 |
+
reranked_docs = [retrieved_docs[idx] for idx in reranked_indices]
|
66 |
+
return reranked_docs
|
67 |
+
|
68 |
+
# Streamlit main function
|
69 |
def main():
|
70 |
st.title("Multi-Stage Retrieval Pipeline")
|
71 |
|
72 |
+
st.write("Loading the dataset...")
|
73 |
corpus, queries, qrels = load_dataset()
|
74 |
+
st.write(f"Corpus Size: {len(corpus)}")
|
75 |
+
|
76 |
+
# User input for asking a question
|
77 |
+
user_query = st.text_input("Ask a question:")
|
78 |
+
|
79 |
+
if user_query:
|
80 |
+
st.write(f"Your query: {user_query}")
|
81 |
+
|
82 |
+
st.write("Running Candidate Retrieval...")
|
83 |
+
retrieved_docs = candidate_retrieval(user_query, corpus, top_k=10)
|
84 |
+
|
85 |
+
st.write("Running Reranking...")
|
86 |
+
reranked_docs = rerank(retrieved_docs, user_query, corpus, top_k=5)
|
87 |
+
|
88 |
+
st.write("Top Reranked Documents:")
|
89 |
+
for doc_id in reranked_docs:
|
90 |
+
st.write(f"Document ID: {doc_id}")
|
91 |
+
st.write(f"Document Text: {corpus[doc_id]['text'][:500]}...") # Show the first 500 characters of the document
|
92 |
+
|
93 |
+
st.write("Query executed successfully!")
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
main()
|