Spaces:
Runtime error
Runtime error
File size: 4,282 Bytes
844c647 3b560f1 844c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import cv2
import matplotlib.pyplot as plt
from scipy import ndimage
from scipy.ndimage.filters import convolve
import numpy as np
def hysteresis(img, weak = 75, strong=255):
M, N = img.shape
for i in range(1, M-1):
for j in range(1, N-1):
if (img[i,j] == weak):
try:
if ((img[i+1, j-1] == strong) or (img[i+1, j] == strong) or (img[i+1, j+1] == strong)
or (img[i, j-1] == strong) or (img[i, j+1] == strong)
or (img[i-1, j-1] == strong) or (img[i-1, j] == strong) or (img[i-1, j+1] == strong)):
img[i, j] = strong
else:
img[i, j] = 0
except IndexError as e:
pass
return img
def threshold(img, lowThresholdRatio=0.05, highThresholdRatio=0.09):
highThreshold = img.max() * highThresholdRatio;
lowThreshold = highThreshold * lowThresholdRatio;
M, N = img.shape
res = np.zeros((M,N), dtype=np.int32)
weak = np.int32(25)
strong = np.int32(255)
strong_i, strong_j = np.where(img >= highThreshold)
zeros_i, zeros_j = np.where(img < lowThreshold)
weak_i, weak_j = np.where((img <= highThreshold) & (img >= lowThreshold))
res[strong_i, strong_j] = strong
res[weak_i, weak_j] = weak
return (res)
def non_max_suppression(img, D):
M, N = img.shape
Z = np.zeros((M,N), dtype=np.int32)
angle = D * 180. / np.pi
angle[angle < 0] += 180
for i in range(1,M-1):
for j in range(1,N-1):
try:
q = 255
r = 255
#angle 0
if (0 <= angle[i,j] < 22.5) or (157.5 <= angle[i,j] <= 180):
q = img[i, j+1]
r = img[i, j-1]
#angle 45
elif (22.5 <= angle[i,j] < 67.5):
q = img[i+1, j-1]
r = img[i-1, j+1]
#angle 90
elif (67.5 <= angle[i,j] < 112.5):
q = img[i+1, j]
r = img[i-1, j]
#angle 135
elif (112.5 <= angle[i,j] < 157.5):
q = img[i-1, j-1]
r = img[i+1, j+1]
if (img[i,j] >= q) and (img[i,j] >= r):
Z[i,j] = img[i,j]
else:
Z[i,j] = 0
except IndexError as e:
pass
return Z
def gaussian_kernel(size, sigma=1):
size = int(size) // 2
x, y = np.mgrid[-size:size+1, -size:size+1]
normal = 1 / (2.0 * np.pi * sigma**2)
g = np.exp(-((x**2 + y**2) / (2.0*sigma**2))) * normal
return g
def sobel_filters(img):
Kx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], np.float32)
Ky = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], np.float32)
Ix = ndimage.filters.convolve(img, Kx)
Iy = ndimage.filters.convolve(img, Ky)
G = np.hypot(Ix, Iy)
G = G / G.max() * 255
theta = np.arctan2(Iy, Ix)
return (G, theta)
def canny(img, kernel, sigma):
img_color = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gaussian = convolve(img_gray, gaussian_kernel(kernel, sigma))
G, theta = sobel_filters(img_gaussian)
img_nonmax = non_max_suppression(G, theta)
img_threshold = threshold(img_nonmax)
img_final = hysteresis(img_threshold)
return img_final
interface = gr.Interface(
title = "Canny Edge Detector ๐ค",
description = "<h3>The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images.</h3> <br> <b>Select an image ๐ผ</b>",
article='Step-by-step on GitHub <a href="https://github.com/Ivanrs297/machine-learning-projects/blob/main/computer-vision/edge_detection/main.ipynb"> notebook </a> <br> ~ Ivanrs',
allow_flagging = "never",
fn = canny,
inputs = [
gr.Image(),
gr.Slider(1, 9, step = 1, value=3, label = "Kernel Size"),
gr.Slider(1, 20, step = 5, value=10, label = "Sigma"),
],
outputs = "image"
)
interface.launch(share = False) |