Fluxi-IA / app.py
J-LAB's picture
Update app.py
5df4b4d verified
raw
history blame
4.97 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
import io
import base64 # Adicionando a biblioteca base64 para decodificação
from PIL import Image
import subprocess
# Instalando a dependência flash-attn se necessário
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Carregando o modelo e o processador
model_id = 'J-LAB/Florence-vl3'
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
DESCRIPTION = "# Product Describe by Fluxi IA\n### Base Model [Florence-2] (https://huggingface.co/microsoft/Florence-2-large)"
@spaces.GPU
def run_example(task_prompt, image):
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
# Função para processar imagens, agora suportando Base64
def process_image(image, task_prompt):
# Verifica se a imagem é uma string base64
if isinstance(image, str) and image.startswith("data:image"):
# Extraindo a parte base64 da string
base64_image = image.split(",")[1]
# Decodificando a imagem base64
image = Image.open(io.BytesIO(base64.b64decode(base64_image)))
elif isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
else:
image = Image.fromarray(image) # Convertendo um array NumPy para imagem PIL, se aplicável
# Mapeando os prompts de tarefas
if task_prompt == 'Product Caption':
task_prompt = '<MORE_DETAILED_CAPTION>'
elif task_prompt == 'OCR':
task_prompt = '<OCR>'
# Chamando o exemplo com a imagem processada e o prompt da tarefa
results = run_example(task_prompt, image)
# Extraindo o texto gerado a partir dos resultados
if results and task_prompt in results:
output_text = results[task_prompt]
else:
output_text = ""
# Convertendo quebras de linha para quebras de linha HTML
output_text = output_text.replace("\n\n", "<br><br>").replace("\n", "<br>")
return output_text
css = """
#output {
overflow: auto;
border: 1px solid #ccc;
padding: 10px;
background-color: rgb(31 41 55);
color: #fff;
}
"""
js = """
function adjustHeight() {
var outputElement = document.getElementById('output');
outputElement.style.height = 'auto'; // Reset height to auto to get the actual content height
var height = outputElement.scrollHeight + 'px'; // Get the scrollHeight
outputElement.style.height = height; // Set the height
}
// Attach the adjustHeight function to the click event of the submit button
document.querySelector('button').addEventListener('click', function() {
setTimeout(adjustHeight, 500); // Adjust the height after a small delay to ensure content is loaded
});
"""
single_task_list = ['Product Caption', 'OCR']
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Product Image Select"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture", source="upload", type="pil") # Suporte a PIL images
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Product Caption")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.HTML(label="Output Text", elem_id="output")
gr.Markdown("""
## How to use via API
To use this model via API, you can follow the example code below:
```python
import base64
from PIL import Image
import io
import requests
# Converting image to base64
image_path = 'path_to_image.png'
with open(image_path, 'rb') as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# Preparing the payload
payload = {
"image": f"data:image/png;base64,{image_base64}",
"task_prompt": "Product Caption"
}
response = requests.post("http://your-space-url-here", json=payload)
print(response.json())
```
""")
submit_btn.click(process_image, [input_img, task_prompt], [output_text])
demo.load(lambda: None, inputs=None, outputs=None, js=js)
demo.launch(debug=True)