File size: 9,381 Bytes
f8522bf
 
 
 
 
 
 
 
 
 
 
 
52d4f49
 
f8522bf
 
 
9473b92
bff81b1
f8522bf
2142374
 
 
 
 
938a9a6
d349362
2142374
6a4790d
f8522bf
6a4790d
f8522bf
 
 
 
 
 
 
 
 
 
 
 
 
 
8080d41
 
f8522bf
 
 
30e9217
 
f8522bf
 
 
 
52d4f49
 
81d7480
 
 
 
bff81b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0945673
 
 
9f8913a
52d4f49
 
 
145f602
 
209d293
523a632
 
 
 
 
 
f7abdbb
 
0e47f27
c98dd30
2142374
8284d9b
a241b28
 
209d293
 
 
f8522bf
145f602
8080d41
 
 
 
 
 
 
 
 
 
 
30e9217
ecb159f
 
30e9217
f4b9e89
 
 
 
 
ecb159f
f8522bf
 
 
 
 
6a4790d
f8522bf
 
3aacff9
f8522bf
8080d41
f8522bf
 
705a5b8
f8522bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1d0f7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# JB:
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated. 
# Importing from langchain will no longer be supported as of langchain==0.2.0.
# Please import from langchain-community instead:
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
# To install langchain-community run `pip install -U langchain-community`.
from langchain_community.embeddings import FastEmbedEmbeddings

import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
# JB:
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OllamaEmbeddings

# JB:
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader

# JB:
# File Directory
# This covers how to load all documents in a directory.
# Under the hood, by default this uses the UnstructuredLoader.
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
import chardet

from langchain_community.vectorstores import FAISS
# from langchain.vectorstores import Chroma
# from langchain_community.vectorstores import Chroma

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
import time
from dotenv import load_dotenv

load_dotenv()  #

# groq_api_key = os.environ['GROQ_API_KEY']
groq_api_key = "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" # os.environ['GROQ_API_KEY']
print("groq_api_key: ", groq_api_key)

# st.title("Chat with Docs - Groq Edition :) ")
st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")

if "vector" not in st.session_state:

    st.write("Chunking, embedding, storing in FAISS vectorstore ...")
    
    # st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
    st.session_state.embeddings = FastEmbedEmbeddings() # JB


    # st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
    # st.session_state.docs = st.session_state.loader.load()                           # ORIGINAL
    # https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
    # https://python.langchain.com/docs/integrations/document_loaders/merge_doc
    # from langchain_community.document_loaders import PyPDFLoader
    # loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
    #
    # https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
    # 
    # https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory 
    # !!!!!
    # PyPDF Directory
    # Load PDFs from directory
    # from langchain_community.document_loaders import PyPDFDirectoryLoader
    # loader = PyPDFDirectoryLoader("example_data/")
    # docs = loader.load()
    #
    # ZIE OOK:
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
    # Using MathPix
    # Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
    # from langchain_community.document_loaders import MathpixPDFLoader
    # loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
    # data = loader.load()
    # pdf_file_path = "*.pdf"                                                 # JB
    # st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load()   # JB
    # st.session_state.loader = PyPDFLoader(*.pdf).load()                     # JB syntax error *.pdf !
    # st.session_state.loader = PyPDFDirectoryLoader("*.pdf")                 # JB PyPDFDirectoryLoader("example_data/")   
    # chunks = self.text_splitter.split_documents(docs)
    # chunks = filter_complex_metadata(chunks)

    # JB:
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
    # st.session_state.docs = st.session_state.loader.load()
    # loader = PyPDFDirectoryLoader(".")
    # docs = loader.load()
    # st.session_state.docs = docs

    # JB:
    # https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
    # text_loader_kwargs={'autodetect_encoding': True}
    text_loader_kwargs={'autodetect_encoding': False}
    path = '../'
    # loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
    # PyPDFDirectoryLoader (TEST):
    # loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
    # loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
    loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
    docs = loader.load()
    st.session_state.docs = docs
    
    st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
    # https://python.langchain.com/docs/integrations/vectorstores/faiss
    # docs_and_scores = db.similarity_search_with_score(query)
    # Saving and loading
    # You can also save and load a FAISS index. 
    # This is useful so you don’t have to recreate it everytime you use it.
    # db.save_local("faiss_index")
    # new_db = FAISS.load_local("faiss_index", embeddings)
    # docs = new_db.similarity_search(query)
    # docs[0]
    # Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
    #
    st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
    
    # st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
    st.session_state.vector.save_local("faiss_index")
    # The de-serialization relies loading a pickle file. 
    # Pickle files can be modified to deliver a malicious payload that results in execution of arbitrary code on your machine.
    # You will need to set `allow_dangerous_deserialization` to `True` to enable deserialization. If you do this, make sure that you trust the source of the data.
    
    st.session_state.vector = FAISS.load_local("faiss_index", st.session_state.embeddings, allow_dangerous_deserialization=True)
    
    # ZIE: 
    # ZIE VOOR EEN APP MET CHROMADB:
    # https://github.com/vndee/local-rag-example/blob/main/rag.py
    # https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
    # Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
    # st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB


    
# st.title("Chat with Docs - Groq Edition :) ")
# st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")

llm = ChatGroq(
            temperature=0.2,
            groq_api_key=groq_api_key, 
            model_name='mixtral-8x7b-32768'
    )

prompt = ChatPromptTemplate.from_template("""
Answer the following question based only on the provided context. 
Think step by step before providing a detailed answer. 
I will tip you $200 if the user finds the answer helpful. 
<context>
{context}
</context>
Question: {input}""")

document_chain = create_stuff_documents_chain(llm, prompt)

retriever = st.session_state.vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)

prompt = st.text_input("Input your prompt here")


# If the user hits enter
if prompt:
    # Then pass the prompt to the LLM
    start = time.process_time()
    response = retrieval_chain.invoke({"input": prompt})
    print(f"Response time: {time.process_time() - start}")

    st.write(response["answer"])

    # With a streamlit expander
    with st.expander("Document Similarity Search"):
        # Find the relevant chunks
        for i, doc in enumerate(response["context"]):
            # print(doc)
            # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
            st.write(doc.page_content)
            st.write("--------------------------------")