File size: 11,960 Bytes
f8522bf 52d4f49 f8522bf 9473b92 bff81b1 f8522bf 2142374 938a9a6 d349362 2142374 6a4790d f8522bf 6a4790d f8522bf 922ade1 f8522bf 8080d41 6daff1a 36731b0 7141efe 60185cb 922ade1 36731b0 f8522bf 1b7ca21 30e9217 f8522bf 52d4f49 81d7480 bff81b1 0945673 9f8913a 52d4f49 145f602 209d293 523a632 f7abdbb 0e47f27 c98dd30 2142374 8284d9b a241b28 209d293 60185cb 209d293 f8522bf 145f602 8080d41 30e9217 ecb159f 2228248 f4b9e89 2228248 ecb159f f8522bf 6a4790d f8522bf 36731b0 3aacff9 f8522bf 8080d41 f8522bf 705a5b8 f8522bf fb1d0f7 36731b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# JB:
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated.
# Importing from langchain will no longer be supported as of langchain==0.2.0.
# Please import from langchain-community instead:
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
# To install langchain-community run `pip install -U langchain-community`.
from langchain_community.embeddings import FastEmbedEmbeddings
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
# JB:
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OllamaEmbeddings
# JB:
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
# JB:
# File Directory
# This covers how to load all documents in a directory.
# Under the hood, by default this uses the UnstructuredLoader.
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
import chardet
from langchain_community.vectorstores import FAISS
# from langchain.vectorstores import Chroma
# from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
import time
from dotenv import load_dotenv
import glob
load_dotenv() #
# groq_api_key = os.environ['GROQ_API_KEY']
groq_api_key = "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" # os.environ['GROQ_API_KEY']
print("groq_api_key: ", groq_api_key)
# st.title("Chat with Docs - Groq Edition :) ")
st.write("NonToxicGlazeAdvisor: A tool for getting advice on non-toxic ceramic glazes for earthenware temperature ranges.")
st.write("Victor Benchuijsen : (Glaze techniques / Ceramics)")
st.write("Jan Bours : Artificial Intelligence / Data Science / Natural Language Processing (ALL RIGHTS RESERVED)")
st.write("---------------------------------")
st.write("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 1 - March 18, 2024")
st.write("---------------------------------")
st.write("LIST OF ALL THE LOADED DOCUMENTS: ")
st.write("")
# pdf_files = glob.glob("*.pdf")
word_files = glob.glob("*.docx")
# for file in pdf_files:
for file in word_files:
st.write(file)
st.write("---------------------------------")
if "vector" not in st.session_state:
st.write("Chunking, embedding, storing in FAISS vectorstore (Can take a long time!).")
st.write("Wait till this hase been done before you can enter your query! .......")
# st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
st.session_state.embeddings = FastEmbedEmbeddings() # JB
# st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
# st.session_state.docs = st.session_state.loader.load() # ORIGINAL
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
# https://python.langchain.com/docs/integrations/document_loaders/merge_doc
# from langchain_community.document_loaders import PyPDFLoader
# loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
#
# https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
#
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# !!!!!
# PyPDF Directory
# Load PDFs from directory
# from langchain_community.document_loaders import PyPDFDirectoryLoader
# loader = PyPDFDirectoryLoader("example_data/")
# docs = loader.load()
#
# ZIE OOK:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
# Using MathPix
# Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
# from langchain_community.document_loaders import MathpixPDFLoader
# loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
# data = loader.load()
# pdf_file_path = "*.pdf" # JB
# st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load() # JB
# st.session_state.loader = PyPDFLoader(*.pdf).load() # JB syntax error *.pdf !
# st.session_state.loader = PyPDFDirectoryLoader("*.pdf") # JB PyPDFDirectoryLoader("example_data/")
# chunks = self.text_splitter.split_documents(docs)
# chunks = filter_complex_metadata(chunks)
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# st.session_state.docs = st.session_state.loader.load()
# loader = PyPDFDirectoryLoader(".")
# docs = loader.load()
# st.session_state.docs = docs
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
# text_loader_kwargs={'autodetect_encoding': True}
text_loader_kwargs={'autodetect_encoding': False}
path = '../'
# loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# PyPDFDirectoryLoader (TEST):
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
docs = loader.load()
st.session_state.docs = docs
# JB 18-03-2024:
# https://python.langchain.com/docs/integrations/document_loaders/
# MICROSOFT WORD:
# https://python.langchain.com/docs/integrations/document_loaders/microsoft_word
# 1 - Using Docx2txt
# Load .docx using Docx2txt into a document.
# %pip install --upgrade --quiet docx2txt
# from langchain_community.document_loaders import Docx2txtLoader
# loader = Docx2txtLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]
#
# 2A - Using Unstructured
# from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]
#
# 2B - Retain Elements
# Under the hood, Unstructured creates different “elements” for different chunks of text.
# By default we combine those together, but you can easily keep that separation by specifying mode="elements".
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx", mode="elements")
# data = loader.load()
# data[0]
# Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)
#
# 2A - Using Unstructured
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader(path, glob="**/*.docx")
docs = loader.load()
st.session_state.docs = docs
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
# https://python.langchain.com/docs/integrations/vectorstores/faiss
# docs_and_scores = db.similarity_search_with_score(query)
# Saving and loading
# You can also save and load a FAISS index.
# This is useful so you don’t have to recreate it everytime you use it.
# db.save_local("faiss_index")
# new_db = FAISS.load_local("faiss_index", embeddings)
# docs = new_db.similarity_search(query)
# docs[0]
# Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
#
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
#st.session_state.vector.save_local("faiss_index")
# The de-serialization relies loading a pickle file.
# Pickle files can be modified to deliver a malicious payload that results in execution of arbitrary code on your machine.
# You will need to set `allow_dangerous_deserialization` to `True` to enable deserialization. If you do this, make sure that you trust the source of the data.
#st.session_state.vector = FAISS.load_local("faiss_index", st.session_state.embeddings, allow_dangerous_deserialization=True)
# ZIE:
# ZIE VOOR EEN APP MET CHROMADB:
# https://github.com/vndee/local-rag-example/blob/main/rag.py
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
st.write("---------------------------------")
# st.title("Chat with Docs - Groq Edition :) ")
# st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")
llm = ChatGroq(
temperature=0.2,
groq_api_key=groq_api_key,
model_name='mixtral-8x7b-32768'
)
prompt = ChatPromptTemplate.from_template("""
Answer the following question based only on the provided context.
Think step by step before providing a detailed answer.
I will tip you $200 if the user finds the answer helpful.
<context>
{context}
</context>
Question: {input}""")
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
prompt = st.text_input("Input your prompt here")
# If the user hits enter
if prompt:
# Then pass the prompt to the LLM
start = time.process_time()
response = retrieval_chain.invoke({"input": prompt})
print(f"Response time: {time.process_time() - start}")
st.write(response["answer"])
# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
# print(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
st.write(doc.page_content)
st.write("--------------------------------")
st.write("---------------------------------") |