File size: 26,124 Bytes
8760fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5befc
 
 
 
 
 
 
8760fb5
ba5befc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8760fb5
 
ba5befc
 
0a8eb69
04b5589
8760fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a535e
8760fb5
 
 
 
 
 
 
 
 
ba5befc
 
 
 
 
8760fb5
ba5befc
8760fb5
ba5befc
8760fb5
 
 
1265dc2
 
8760fb5
 
 
2bc7d95
 
 
8760fb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import cv2
import gradio as gr
import imutils
import numpy as np
import torch
from pytorchvideo.transforms import (
    ApplyTransformToKey,
    Normalize,
    RandomShortSideScale,
    RemoveKey,
    ShortSideScale,
    UniformTemporalSubsample,
)
from torchvision.transforms import (
    Compose,
    Lambda,
    RandomCrop,
    RandomHorizontalFlip,
    Resize,
)
# my code below
# import transformers.models.timesformer.modeling_timesformer
from transformers.models.timesformer.modeling_timesformer import TimeSformerDropPath, TimeSformerAttention, TimesformerIntermediate, TimesformerOutput, TimesformerLayer, TimesformerEncoder, TimesformerModel, TIMESFORMER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, TimesformerEmbeddings, TimesformerForVideoClassification
from transformers import TimesformerConfig
configuration = TimesformerConfig()
import collections
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, ImageClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers.models.timesformer.configuration_timesformer import TimesformerConfig
class MyTimesformerLayer(TimesformerLayer):
    def __init__(self, config: configuration, layer_index: int) -> None:
        super().__init__()

        attention_type = config.attention_type

        drop_path_rates = [
            x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
        ]  # stochastic depth decay rule
        drop_path_rate = drop_path_rates[layer_index]

        self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
        self.attention = TimeSformerAttention(config)
        self.intermediate = TimesformerIntermediate(config)
        self.output = TimesformerOutput(config)
        self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.config = config
        self.attention_type = attention_type
        if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
            raise ValueError("Unknown attention type: {}".format(attention_type))

        # Temporal Attention Parameters
        if self.attention_type == "divided_space_time":
            self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
            self.temporal_attention = TimeSformerAttention(config)
            self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
        num_frames = self.config.num_frames
        num_patch_width = self.config.image_size // self.config.patch_size
        batch_size = hidden_states.shape[0]
        num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
        num_patch_height = num_spatial_tokens // num_patch_width

        if self.attention_type in ["space_only", "joint_space_time"]:
            self_attention_outputs = self.attention(
                self.layernorm_before(hidden_states), output_attentions=output_attentions
            )
            attention_output = self_attention_outputs[0]
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

            hidden_states = hidden_states + self.drop_path(attention_output)

            layer_output = self.layernorm_after(hidden_states)
            layer_output = self.intermediate(layer_output)
            layer_output = self.output(layer_output)
            layer_output = hidden_states + self.drop_path(layer_output)

            outputs = (layer_output,) + outputs

            return outputs

        elif self.attention_type == "divided_space_time":
            # Spatial
            init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
            cls_token = init_cls_token.repeat(1, num_frames, 1)
            cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
            spatial_embedding = hidden_states[:, 1:, :]
            spatial_embedding = (
                spatial_embedding.reshape(
                    batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
                )
                .permute(0, 3, 1, 2, 4)
                .reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
            )
            spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)

            spatial_attention_outputs = self.attention(
                self.layernorm_before(spatial_embedding), output_attentions=output_attentions
            )
            attention_output = spatial_attention_outputs[0]
            outputs = spatial_attention_outputs[1:]  # add self attentions if we output attention weights

            residual_spatial = self.drop_path(attention_output)

            # Taking care of CLS token
            cls_token = residual_spatial[:, 0, :]
            cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
            cls_token = torch.mean(cls_token, 1, True)  # averaging for every frame
            residual_spatial = residual_spatial[:, 1:, :]
            residual_spatial = (
                residual_spatial.reshape(
                    batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
                )
                .permute(0, 2, 3, 1, 4)
                .reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
            )
            residual = residual_spatial
            hidden_states = hidden_states[:, 1:, :] + residual_spatial

            # Temporal
            temporal_embedding = hidden_states
            temporal_embedding = temporal_embedding.reshape(
                batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
            ).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])

            temporal_attention_outputs = self.temporal_attention(
                self.temporal_layernorm(temporal_embedding),
            )
            attention_output = temporal_attention_outputs[0]

            residual_temporal = self.drop_path(attention_output)

            residual_temporal = residual_temporal.reshape(
                batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
            ).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
            residual_temporal = self.temporal_dense(residual_temporal)
            hidden_states = hidden_states + residual_temporal

            # Mlp
            hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual_temporal), 1)
            layer_output = self.layernorm_after(hidden_states)
            layer_output = self.intermediate(layer_output)
            layer_output = self.output(layer_output)
            layer_output = hidden_states + self.drop_path(layer_output)

            outputs = (layer_output,) + outputs

            return outputs
import transformers.models.timesformer.modeling_timesformer
class MyTimesformerEncoder(TimesformerEncoder):
    def __init__(self, config: configuration) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([MyTimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(hidden_states, output_attentions)

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class MyTimesformerModel(TimesformerModel):
    def __init__(self, config: configuration):
        super().__init__(config)
        self.config = config

        self.embeddings = TimesformerEmbeddings(config)
        self.encoder = TimesformerEncoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.patch_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> import av
        >>> import numpy as np

        >>> from transformers import AutoImageProcessor, TimesformerModel
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`List[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`List[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 8 frames
        >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container, indices)

        >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
        >>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")

        >>> # prepare video for the model
        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> # forward pass
        >>> outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 1569, 768]
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        embedding_output = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            embedding_output,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        if self.layernorm is not None:
            sequence_output = self.layernorm(sequence_output)

        if not return_dict:
            return (sequence_output,) + encoder_outputs[1:]

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

class MyTimesformerForVideoClassification(TimesformerForVideoClassification):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.timesformer = MyTimesformerModel(config)

        # Classifier head
        self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> import av
        >>> import torch
        >>> import numpy as np

        >>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
        >>> from huggingface_hub import hf_hub_download

        >>> np.random.seed(0)


        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`List[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])


        >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
        ...     '''
        ...     Sample a given number of frame indices from the video.
        ...     Args:
        ...         clip_len (`int`): Total number of frames to sample.
        ...         frame_sample_rate (`int`): Sample every n-th frame.
        ...         seg_len (`int`): Maximum allowed index of sample's last frame.
        ...     Returns:
        ...         indices (`List[int]`): List of sampled frame indices
        ...     '''
        ...     converted_len = int(clip_len * frame_sample_rate)
        ...     end_idx = np.random.randint(converted_len, seg_len)
        ...     start_idx = end_idx - converted_len
        ...     indices = np.linspace(start_idx, end_idx, num=clip_len)
        ...     indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
        ...     return indices


        >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
        >>> file_path = hf_hub_download(
        ...     repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample 8 frames
        >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
        >>> video = read_video_pyav(container, indices)

        >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
        >>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")

        >>> inputs = image_processor(list(video), return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        ...     logits = outputs.logits

        >>> # model predicts one of the 400 Kinetics-400 classes
        >>> predicted_label = logits.argmax(-1).item()
        >>> print(model.config.id2label[predicted_label])
        eating spaghetti
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.timesformer(
            pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0][:, 0]

        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

        
from transformers import AutoImageProcessor

MODEL_CKPT = "JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

MODEL = MyTimesformerForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE)
PROCESSOR = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")

RESIZE_TO = PROCESSOR.size["shortest_edge"]
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]}
VAL_TRANSFORMS = Compose(
    [
        UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE),
        Lambda(lambda x: x / 255.0),
        Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]),
        Resize((RESIZE_TO, RESIZE_TO)),
    ]
)
LABELS = list(MODEL.config.label2id.keys())


def parse_video(video_file):
    """A utility to parse the input videos.

    Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
    """
    vs = cv2.VideoCapture(video_file)

    # try to determine the total number of frames in the video file
    try:
        prop = (
            cv2.cv.CV_CAP_PROP_FRAME_COUNT
            if imutils.is_cv2()
            else cv2.CAP_PROP_FRAME_COUNT
        )
        total = int(vs.get(prop))
        print("[INFO] {} total frames in video".format(total))

    # an error occurred while trying to determine the total
    # number of frames in the video file
    except:
        print("[INFO] could not determine # of frames in video")
        print("[INFO] no approx. completion time can be provided")
        total = -1

    frames = []

    # loop over frames from the video file stream
    while True:
        # read the next frame from the file
        (grabbed, frame) = vs.read()
        if frame is not None:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame)
        # if the frame was not grabbed, then we have reached the end
        # of the stream
        if not grabbed:
            break

    return frames


def preprocess_video(frames: list):
    """Utility to apply preprocessing transformations to a video tensor."""
    # Each frame in the `frames` list has the shape: (height, width, num_channels).
    # Collated together the `frames` has the the shape: (num_frames, height, width, num_channels).
    # So, after converting the `frames` list to a torch tensor, we permute the shape
    # such that it becomes (num_channels, num_frames, height, width) to make
    # the shape compatible with the preprocessing transformations. After applying the
    # preprocessing chain, we permute the shape to (num_frames, num_channels, height, width)
    # to make it compatible with the model. Finally, we add a batch dimension so that our video
    # classification model can operate on it.
    video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype))
    video_tensor = video_tensor.permute(
        3, 0, 1, 2
    )  # (num_channels, num_frames, height, width)
    video_tensor_pp = VAL_TRANSFORMS(video_tensor)
    video_tensor_pp = video_tensor_pp.permute(
        1, 0, 2, 3
    )  # (num_frames, num_channels, height, width)
    video_tensor_pp = video_tensor_pp.unsqueeze(0)
    return video_tensor_pp.to(DEVICE)


def infer(video_file):
    frames = parse_video(video_file)
    video_tensor = preprocess_video(frames)
    inputs = {"pixel_values": video_tensor}

    # forward pass
    with torch.no_grad():
        outputs = MODEL(**inputs)
        logits = outputs.logits
    softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0)
    confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))}
    return confidences


gr.Interface(
    fn=infer,
    inputs=gr.Video(type="file"),
    outputs=gr.Label(num_top_classes=3),
    examples=[
        ["examples/archery.mp4"],
        ["examples/bowling.mp4"],
        ["examples/flying_kite.mp4"],
        ["examples/high_jump.mp4"],
        ["examples/marching.mp4"],
    ],
    title="MyViT fine-tuned on a subset of Kinetics400",
    description=(
        "Gradio demo for MyViT for video classification. To use it, simply upload your video or click one of the"
        " examples to load them. Read more at the links below."
    ),
    article=(
        "<div style='text-align: center;'><p>MyViT</p>"
        " <center><a href='https://huggingface.co/JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data' target='_blank'>Fine-tuned Model</a></center></div>"
    ),
    allow_flagging=False,
    allow_screenshot=False,
    share=True,
    batch=True, 
    max_batch_size=16,
).launch()