JackWong0911's picture
Update app.py
2bc7d95 verified
raw
history blame
26.1 kB
import cv2
import gradio as gr
import imutils
import numpy as np
import torch
from pytorchvideo.transforms import (
ApplyTransformToKey,
Normalize,
RandomShortSideScale,
RemoveKey,
ShortSideScale,
UniformTemporalSubsample,
)
from torchvision.transforms import (
Compose,
Lambda,
RandomCrop,
RandomHorizontalFlip,
Resize,
)
# my code below
# import transformers.models.timesformer.modeling_timesformer
from transformers.models.timesformer.modeling_timesformer import TimeSformerDropPath, TimeSformerAttention, TimesformerIntermediate, TimesformerOutput, TimesformerLayer, TimesformerEncoder, TimesformerModel, TIMESFORMER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, TimesformerEmbeddings, TimesformerForVideoClassification
from transformers import TimesformerConfig
configuration = TimesformerConfig()
import collections
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, ImageClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers.models.timesformer.configuration_timesformer import TimesformerConfig
class MyTimesformerLayer(TimesformerLayer):
def __init__(self, config: configuration, layer_index: int) -> None:
super().__init__()
attention_type = config.attention_type
drop_path_rates = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
] # stochastic depth decay rule
drop_path_rate = drop_path_rates[layer_index]
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.attention = TimeSformerAttention(config)
self.intermediate = TimesformerIntermediate(config)
self.output = TimesformerOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
self.attention_type = attention_type
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
raise ValueError("Unknown attention type: {}".format(attention_type))
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.temporal_attention = TimeSformerAttention(config)
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
num_frames = self.config.num_frames
num_patch_width = self.config.image_size // self.config.patch_size
batch_size = hidden_states.shape[0]
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
num_patch_height = num_spatial_tokens // num_patch_width
if self.attention_type in ["space_only", "joint_space_time"]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
hidden_states = hidden_states + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
elif self.attention_type == "divided_space_time":
# Spatial
init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, num_frames, 1)
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
spatial_embedding = hidden_states[:, 1:, :]
spatial_embedding = (
spatial_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
)
.permute(0, 3, 1, 2, 4)
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
)
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)
spatial_attention_outputs = self.attention(
self.layernorm_before(spatial_embedding), output_attentions=output_attentions
)
attention_output = spatial_attention_outputs[0]
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights
residual_spatial = self.drop_path(attention_output)
# Taking care of CLS token
cls_token = residual_spatial[:, 0, :]
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame
residual_spatial = residual_spatial[:, 1:, :]
residual_spatial = (
residual_spatial.reshape(
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
)
.permute(0, 2, 3, 1, 4)
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
)
residual = residual_spatial
hidden_states = hidden_states[:, 1:, :] + residual_spatial
# Temporal
temporal_embedding = hidden_states
temporal_embedding = temporal_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])
temporal_attention_outputs = self.temporal_attention(
self.temporal_layernorm(temporal_embedding),
)
attention_output = temporal_attention_outputs[0]
residual_temporal = self.drop_path(attention_output)
residual_temporal = residual_temporal.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
residual_temporal = self.temporal_dense(residual_temporal)
hidden_states = hidden_states + residual_temporal
# Mlp
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual_temporal), 1)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
import transformers.models.timesformer.modeling_timesformer
class MyTimesformerEncoder(TimesformerEncoder):
def __init__(self, config: configuration) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([MyTimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class MyTimesformerModel(TimesformerModel):
def __init__(self, config: configuration):
super().__init__(config)
self.config = config
self.embeddings = TimesformerEmbeddings(config)
self.encoder = TimesformerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> import av
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1569, 768]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class MyTimesformerForVideoClassification(TimesformerForVideoClassification):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.timesformer = MyTimesformerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
eating spaghetti
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.timesformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0][:, 0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
from transformers import AutoImageProcessor
MODEL_CKPT = "JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL = MyTimesformerForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE)
PROCESSOR = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
RESIZE_TO = PROCESSOR.size["shortest_edge"]
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]}
VAL_TRANSFORMS = Compose(
[
UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE),
Lambda(lambda x: x / 255.0),
Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]),
Resize((RESIZE_TO, RESIZE_TO)),
]
)
LABELS = list(MODEL.config.label2id.keys())
def parse_video(video_file):
"""A utility to parse the input videos.
Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
"""
vs = cv2.VideoCapture(video_file)
# try to determine the total number of frames in the video file
try:
prop = (
cv2.cv.CV_CAP_PROP_FRAME_COUNT
if imutils.is_cv2()
else cv2.CAP_PROP_FRAME_COUNT
)
total = int(vs.get(prop))
print("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
except:
print("[INFO] could not determine # of frames in video")
print("[INFO] no approx. completion time can be provided")
total = -1
frames = []
# loop over frames from the video file stream
while True:
# read the next frame from the file
(grabbed, frame) = vs.read()
if frame is not None:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
return frames
def preprocess_video(frames: list):
"""Utility to apply preprocessing transformations to a video tensor."""
# Each frame in the `frames` list has the shape: (height, width, num_channels).
# Collated together the `frames` has the the shape: (num_frames, height, width, num_channels).
# So, after converting the `frames` list to a torch tensor, we permute the shape
# such that it becomes (num_channels, num_frames, height, width) to make
# the shape compatible with the preprocessing transformations. After applying the
# preprocessing chain, we permute the shape to (num_frames, num_channels, height, width)
# to make it compatible with the model. Finally, we add a batch dimension so that our video
# classification model can operate on it.
video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype))
video_tensor = video_tensor.permute(
3, 0, 1, 2
) # (num_channels, num_frames, height, width)
video_tensor_pp = VAL_TRANSFORMS(video_tensor)
video_tensor_pp = video_tensor_pp.permute(
1, 0, 2, 3
) # (num_frames, num_channels, height, width)
video_tensor_pp = video_tensor_pp.unsqueeze(0)
return video_tensor_pp.to(DEVICE)
def infer(video_file):
frames = parse_video(video_file)
video_tensor = preprocess_video(frames)
inputs = {"pixel_values": video_tensor}
# forward pass
with torch.no_grad():
outputs = MODEL(**inputs)
logits = outputs.logits
softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0)
confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))}
return confidences
gr.Interface(
fn=infer,
inputs=gr.Video(type="file"),
outputs=gr.Label(num_top_classes=3),
examples=[
["examples/archery.mp4"],
["examples/bowling.mp4"],
["examples/flying_kite.mp4"],
["examples/high_jump.mp4"],
["examples/marching.mp4"],
],
title="MyViT fine-tuned on a subset of Kinetics400",
description=(
"Gradio demo for MyViT for video classification. To use it, simply upload your video or click one of the"
" examples to load them. Read more at the links below."
),
article=(
"<div style='text-align: center;'><p>MyViT</p>"
" <center><a href='https://huggingface.co/JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data' target='_blank'>Fine-tuned Model</a></center></div>"
),
allow_flagging=False,
allow_screenshot=False,
share=True,
batch=True,
max_batch_size=16,
).launch()