Spaces:
Runtime error
Runtime error
import cv2 | |
import gradio as gr | |
import imutils | |
import numpy as np | |
import torch | |
from pytorchvideo.transforms import ( | |
ApplyTransformToKey, | |
Normalize, | |
RandomShortSideScale, | |
RemoveKey, | |
ShortSideScale, | |
UniformTemporalSubsample, | |
) | |
from torchvision.transforms import ( | |
Compose, | |
Lambda, | |
RandomCrop, | |
RandomHorizontalFlip, | |
Resize, | |
) | |
# my code below | |
# import transformers.models.timesformer.modeling_timesformer | |
from transformers.models.timesformer.modeling_timesformer import TimeSformerDropPath, TimeSformerAttention, TimesformerIntermediate, TimesformerOutput, TimesformerLayer, TimesformerEncoder, TimesformerModel, TIMESFORMER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, TimesformerEmbeddings, TimesformerForVideoClassification | |
from transformers import TimesformerConfig | |
configuration = TimesformerConfig() | |
import collections | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn.functional | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutput, ImageClassifierOutput | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from transformers.models.timesformer.configuration_timesformer import TimesformerConfig | |
class MyTimesformerLayer(TimesformerLayer): | |
def __init__(self, config: configuration, layer_index: int) -> None: | |
super().__init__() | |
attention_type = config.attention_type | |
drop_path_rates = [ | |
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers) | |
] # stochastic depth decay rule | |
drop_path_rate = drop_path_rates[layer_index] | |
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
self.attention = TimeSformerAttention(config) | |
self.intermediate = TimesformerIntermediate(config) | |
self.output = TimesformerOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.config = config | |
self.attention_type = attention_type | |
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]: | |
raise ValueError("Unknown attention type: {}".format(attention_type)) | |
# Temporal Attention Parameters | |
if self.attention_type == "divided_space_time": | |
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.temporal_attention = TimeSformerAttention(config) | |
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False): | |
num_frames = self.config.num_frames | |
num_patch_width = self.config.image_size // self.config.patch_size | |
batch_size = hidden_states.shape[0] | |
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames | |
num_patch_height = num_spatial_tokens // num_patch_width | |
if self.attention_type in ["space_only", "joint_space_time"]: | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), output_attentions=output_attentions | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
hidden_states = hidden_states + self.drop_path(attention_output) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = self.output(layer_output) | |
layer_output = hidden_states + self.drop_path(layer_output) | |
outputs = (layer_output,) + outputs | |
return outputs | |
elif self.attention_type == "divided_space_time": | |
# Spatial | |
init_cls_token = hidden_states[:, 0, :].unsqueeze(1) | |
cls_token = init_cls_token.repeat(1, num_frames, 1) | |
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2]) | |
spatial_embedding = hidden_states[:, 1:, :] | |
spatial_embedding = ( | |
spatial_embedding.reshape( | |
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2] | |
) | |
.permute(0, 3, 1, 2, 4) | |
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2]) | |
) | |
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1) | |
spatial_attention_outputs = self.attention( | |
self.layernorm_before(spatial_embedding), output_attentions=output_attentions | |
) | |
attention_output = spatial_attention_outputs[0] | |
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights | |
residual_spatial = self.drop_path(attention_output) | |
# Taking care of CLS token | |
cls_token = residual_spatial[:, 0, :] | |
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1]) | |
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame | |
residual_spatial = residual_spatial[:, 1:, :] | |
residual_spatial = ( | |
residual_spatial.reshape( | |
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2] | |
) | |
.permute(0, 2, 3, 1, 4) | |
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2]) | |
) | |
residual = residual_spatial | |
hidden_states = hidden_states[:, 1:, :] + residual_spatial | |
# Temporal | |
temporal_embedding = hidden_states | |
temporal_embedding = temporal_embedding.reshape( | |
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2] | |
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2]) | |
temporal_attention_outputs = self.temporal_attention( | |
self.temporal_layernorm(temporal_embedding), | |
) | |
attention_output = temporal_attention_outputs[0] | |
residual_temporal = self.drop_path(attention_output) | |
residual_temporal = residual_temporal.reshape( | |
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2] | |
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2]) | |
residual_temporal = self.temporal_dense(residual_temporal) | |
hidden_states = hidden_states + residual_temporal | |
# Mlp | |
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual_temporal), 1) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = self.output(layer_output) | |
layer_output = hidden_states + self.drop_path(layer_output) | |
outputs = (layer_output,) + outputs | |
return outputs | |
import transformers.models.timesformer.modeling_timesformer | |
class MyTimesformerEncoder(TimesformerEncoder): | |
def __init__(self, config: configuration) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([MyTimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class MyTimesformerModel(TimesformerModel): | |
def __init__(self, config: configuration): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = TimesformerEmbeddings(config) | |
self.encoder = TimesformerEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import av | |
>>> import numpy as np | |
>>> from transformers import AutoImageProcessor, TimesformerModel | |
>>> from huggingface_hub import hf_hub_download | |
>>> np.random.seed(0) | |
>>> def read_video_pyav(container, indices): | |
... ''' | |
... Decode the video with PyAV decoder. | |
... Args: | |
... container (`av.container.input.InputContainer`): PyAV container. | |
... indices (`List[int]`): List of frame indices to decode. | |
... Returns: | |
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
... ''' | |
... frames = [] | |
... container.seek(0) | |
... start_index = indices[0] | |
... end_index = indices[-1] | |
... for i, frame in enumerate(container.decode(video=0)): | |
... if i > end_index: | |
... break | |
... if i >= start_index and i in indices: | |
... frames.append(frame) | |
... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
... ''' | |
... Sample a given number of frame indices from the video. | |
... Args: | |
... clip_len (`int`): Total number of frames to sample. | |
... frame_sample_rate (`int`): Sample every n-th frame. | |
... seg_len (`int`): Maximum allowed index of sample's last frame. | |
... Returns: | |
... indices (`List[int]`): List of sampled frame indices | |
... ''' | |
... converted_len = int(clip_len * frame_sample_rate) | |
... end_idx = np.random.randint(converted_len, seg_len) | |
... start_idx = end_idx - converted_len | |
... indices = np.linspace(start_idx, end_idx, num=clip_len) | |
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
... return indices | |
>>> # video clip consists of 300 frames (10 seconds at 30 FPS) | |
>>> file_path = hf_hub_download( | |
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
... ) | |
>>> container = av.open(file_path) | |
>>> # sample 8 frames | |
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames) | |
>>> video = read_video_pyav(container, indices) | |
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") | |
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400") | |
>>> # prepare video for the model | |
>>> inputs = image_processor(list(video), return_tensors="pt") | |
>>> # forward pass | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
[1, 1569, 768] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
embedding_output = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if self.layernorm is not None: | |
sequence_output = self.layernorm(sequence_output) | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class MyTimesformerForVideoClassification(TimesformerForVideoClassification): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.timesformer = MyTimesformerModel(config) | |
# Classifier head | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> import av | |
>>> import torch | |
>>> import numpy as np | |
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification | |
>>> from huggingface_hub import hf_hub_download | |
>>> np.random.seed(0) | |
>>> def read_video_pyav(container, indices): | |
... ''' | |
... Decode the video with PyAV decoder. | |
... Args: | |
... container (`av.container.input.InputContainer`): PyAV container. | |
... indices (`List[int]`): List of frame indices to decode. | |
... Returns: | |
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
... ''' | |
... frames = [] | |
... container.seek(0) | |
... start_index = indices[0] | |
... end_index = indices[-1] | |
... for i, frame in enumerate(container.decode(video=0)): | |
... if i > end_index: | |
... break | |
... if i >= start_index and i in indices: | |
... frames.append(frame) | |
... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): | |
... ''' | |
... Sample a given number of frame indices from the video. | |
... Args: | |
... clip_len (`int`): Total number of frames to sample. | |
... frame_sample_rate (`int`): Sample every n-th frame. | |
... seg_len (`int`): Maximum allowed index of sample's last frame. | |
... Returns: | |
... indices (`List[int]`): List of sampled frame indices | |
... ''' | |
... converted_len = int(clip_len * frame_sample_rate) | |
... end_idx = np.random.randint(converted_len, seg_len) | |
... start_idx = end_idx - converted_len | |
... indices = np.linspace(start_idx, end_idx, num=clip_len) | |
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) | |
... return indices | |
>>> # video clip consists of 300 frames (10 seconds at 30 FPS) | |
>>> file_path = hf_hub_download( | |
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
... ) | |
>>> container = av.open(file_path) | |
>>> # sample 8 frames | |
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) | |
>>> video = read_video_pyav(container, indices) | |
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") | |
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400") | |
>>> inputs = image_processor(list(video), return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
... logits = outputs.logits | |
>>> # model predicts one of the 400 Kinetics-400 classes | |
>>> predicted_label = logits.argmax(-1).item() | |
>>> print(model.config.id2label[predicted_label]) | |
eating spaghetti | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.timesformer( | |
pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0][:, 0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
from transformers import AutoImageProcessor | |
MODEL_CKPT = "JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data" | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
MODEL = MyTimesformerForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE) | |
PROCESSOR = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") | |
RESIZE_TO = PROCESSOR.size["shortest_edge"] | |
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames | |
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]} | |
VAL_TRANSFORMS = Compose( | |
[ | |
UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE), | |
Lambda(lambda x: x / 255.0), | |
Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]), | |
Resize((RESIZE_TO, RESIZE_TO)), | |
] | |
) | |
LABELS = list(MODEL.config.label2id.keys()) | |
def parse_video(video_file): | |
"""A utility to parse the input videos. | |
Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/ | |
""" | |
vs = cv2.VideoCapture(video_file) | |
# try to determine the total number of frames in the video file | |
try: | |
prop = ( | |
cv2.cv.CV_CAP_PROP_FRAME_COUNT | |
if imutils.is_cv2() | |
else cv2.CAP_PROP_FRAME_COUNT | |
) | |
total = int(vs.get(prop)) | |
print("[INFO] {} total frames in video".format(total)) | |
# an error occurred while trying to determine the total | |
# number of frames in the video file | |
except: | |
print("[INFO] could not determine # of frames in video") | |
print("[INFO] no approx. completion time can be provided") | |
total = -1 | |
frames = [] | |
# loop over frames from the video file stream | |
while True: | |
# read the next frame from the file | |
(grabbed, frame) = vs.read() | |
if frame is not None: | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
frames.append(frame) | |
# if the frame was not grabbed, then we have reached the end | |
# of the stream | |
if not grabbed: | |
break | |
return frames | |
def preprocess_video(frames: list): | |
"""Utility to apply preprocessing transformations to a video tensor.""" | |
# Each frame in the `frames` list has the shape: (height, width, num_channels). | |
# Collated together the `frames` has the the shape: (num_frames, height, width, num_channels). | |
# So, after converting the `frames` list to a torch tensor, we permute the shape | |
# such that it becomes (num_channels, num_frames, height, width) to make | |
# the shape compatible with the preprocessing transformations. After applying the | |
# preprocessing chain, we permute the shape to (num_frames, num_channels, height, width) | |
# to make it compatible with the model. Finally, we add a batch dimension so that our video | |
# classification model can operate on it. | |
video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype)) | |
video_tensor = video_tensor.permute( | |
3, 0, 1, 2 | |
) # (num_channels, num_frames, height, width) | |
video_tensor_pp = VAL_TRANSFORMS(video_tensor) | |
video_tensor_pp = video_tensor_pp.permute( | |
1, 0, 2, 3 | |
) # (num_frames, num_channels, height, width) | |
video_tensor_pp = video_tensor_pp.unsqueeze(0) | |
return video_tensor_pp.to(DEVICE) | |
def infer(video_file): | |
frames = parse_video(video_file) | |
video_tensor = preprocess_video(frames) | |
inputs = {"pixel_values": video_tensor} | |
# forward pass | |
with torch.no_grad(): | |
outputs = MODEL(**inputs) | |
logits = outputs.logits | |
softmax_scores = torch.nn.functional.softmax(logits, dim=-1).squeeze(0) | |
confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))} | |
return confidences | |
gr.Interface( | |
fn=infer, | |
inputs=gr.Video(type="file"), | |
outputs=gr.Label(num_top_classes=3), | |
examples=[ | |
["examples/archery.mp4"], | |
["examples/bowling.mp4"], | |
["examples/flying_kite.mp4"], | |
["examples/high_jump.mp4"], | |
["examples/marching.mp4"], | |
], | |
title="MyViT fine-tuned on a subset of Kinetics400", | |
description=( | |
"Gradio demo for MyViT for video classification. To use it, simply upload your video or click one of the" | |
" examples to load them. Read more at the links below." | |
), | |
article=( | |
"<div style='text-align: center;'><p>MyViT</p>" | |
" <center><a href='https://huggingface.co/JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data' target='_blank'>Fine-tuned Model</a></center></div>" | |
), | |
allow_flagging=False, | |
allow_screenshot=False, | |
share=True, | |
batch=True, | |
max_batch_size=16, | |
).launch() | |